Skip to main content

Advertisement

Log in

On the variation of curvature functionals in a space form with application to a generalized Willmore energy

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Functionals involving surface curvature are important across a range of scientific disciplines, and their extrema are representative of physically meaningful objects such as atomic lattices and biomembranes. Inspired in particular by the relationship of the Willmore energy to lipid bilayers, we consider a general functional depending on a surface and a symmetric combination of its principal curvatures, and provided the surface is immersed in a 3-D space form of constant sectional curvature. We calculate the first and second variations of this functional, extending known results and providing computationally accessible expressions given entirely in terms of the basic geometric information found in the surface fundamental forms. Further, we motivate and introduce the p-Willmore energy functional, applying the stability criteria afforded by our calculations to prove a result about the p-Willmore energy of spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Under some mild regularity assumptions, Newton’s Theorem on symmetric polynomials implies that any symmetric polynomial in the principal curvatures \(\kappa _1,\kappa _2\) of M can be expressed as a smooth function \(\mathcal {E}(H,K)\) of the mean and Gauss curvatures.

References

  1. Aleksandrov, V.A.: On the integral mean curvature of nonrigid surfaces. Sibirsk. Mat. Zh. 50(5), 963–966 (2009). https://doi.org/10.1007/s11202-009-0087-3

    Article  MathSciNet  Google Scholar 

  2. Almgren Jr, F.J., Rivin, I.: The mean curvature integral is invariant under bending. Geom. Topol. Monogr. 1, 1–21 (1998). https://doi.org/10.2140/gtm.1998.1.1

    Article  MathSciNet  MATH  Google Scholar 

  3. Atanasov, V., Dandoloff, R.: Quantum-elastic bump on a surface. Euro. J. Phys. 38(1), 015405 (2016). https://doi.org/10.1088/0143-0807/38/1/015405

    Article  MATH  Google Scholar 

  4. Athukorallage, B., Bornia, G., Paragoda, T., Toda, M.: Willmore-type energies and Willmore-type surfaces in space forms. JP J. Geom.Topol. 18(2), 93 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Barbosa, J.L., do Carmo, M.P., Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197(1), 123–138 (1988). https://doi.org/10.1007/BF01161634

    Article  MathSciNet  MATH  Google Scholar 

  6. Bryant, R.L.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20(1), 23–53 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Canham, P.B.: The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theo. Biol. 26(1), 61–81 (1970). https://doi.org/10.1016/S0022-5193(70)80032-7

    Article  Google Scholar 

  8. Capovilla, R.: Elastic bending energy: a variational approach. J. Geom. Symmetry Phys. 45, 1–45 (2017). https://doi.org/10.7546/jgsp-45-2017-1-45

    Article  MathSciNet  MATH  Google Scholar 

  9. do Carmo, M.P.: Riemannian geometry. Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston (1992). https://doi.org/10.1007/978-1-4757-2201-7

    Book  MATH  Google Scholar 

  10. Clelland, J.N.: From Frenet to Cartan: the method of moving frames. Graduate studies in mathematics. American Mathematical Society (2017). https://books.google.com/books?id=07mODgAAQBAJ. Accessed 11 Aug 2018

  11. Dalphin, J., Henrot, A., Masnou, S., Takahashi, T.: On the minimization of total mean curvature. J Geom Anal 26(4), 2729–2750 (2016). https://doi.org/10.1007/s12220-015-9646-y

    Article  MathSciNet  MATH  Google Scholar 

  12. Doğan, G., Nochetto, R.H.: First variation of the general curvature-dependent surface energy. ESAIM Math. Model. Numer. Anal. 46(1), 59–79 (2011). https://doi.org/10.1051/m2an/2011019

    Article  MathSciNet  MATH  Google Scholar 

  13. Durand, L.: Stability and oscillations of a soap film: an analytic treatment. Am. J. Phys. 49(4), 334–343 (1981). https://doi.org/10.1119/1.12506

    Article  MathSciNet  Google Scholar 

  14. Dziuk, G.: Computational parametric Willmore flow. Numer. Math. 111(1), 55 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elliott, C.M., Fritz, H., Hobbs, G.: Small deformations of Helfrich energy minimising surfaces with applications to biomembranes. Math. Models Methods Appl. Sci. 27(08), 1547–1586 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Filgueiras, C., Silva, E.O., Andrade, F.M.: Nonrelativistic quantum dynamics on a cone with and without a constraining potential. J. Math. Phys. 53(12), 122106 (2012). https://doi.org/10.1063/1.4770048

    Article  MathSciNet  MATH  Google Scholar 

  17. Gálvez, J.A.: Surfaces of constant curvature in 3-dimensional space forms. Mat. Contemp. 37, 1–42 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Germain, S.: Recherches sur la théorie des surfaces élastiques. Mme. Ve. Courcier (1821). https://books.google.com/books?id=7ho8AQAAIAAJ. Accessed 3 Oct 2018

  19. Guo, Z.: Generalized Willmore functionals and related variational problems. Differ. Geom. Appl. 25(5), 543–551 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Helfrich, W.: Elastic properties of lipid bilayers: Theory and possible experiments. Zeitschrift für Naturforschung C 28(11–12), 693–703 (1973). https://doi.org/10.1515/znc-1973-11-1209

    Article  Google Scholar 

  21. Joshi, P., Séquin, C.: Energy minimizers for curvature-based surface functionals. Comput. Aided Des. Appl. 4(5), 607–617 (2007). https://doi.org/10.1080/16864360.2007.10738495

    Article  Google Scholar 

  22. Kik, R.A.: Molecular modeling of proteinlike inclusions in lipid bilayers: lipid-mediated interactions. Phys. Rev. E (2010). https://doi.org/10.1103/PhysRevE.81.021915

    Article  Google Scholar 

  23. Lautrup, B.: Physics of continuous matter: exotic and everyday phenomena in the macroscopic world. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  24. Mantoulidis, C., Miao, P.: Total mean curvature, scalar curvature, and a variational analog of Brown-York mass. Commun. Math. Phys. 352(2), 703–718 (2017). https://doi.org/10.1007/s00220-016-2767-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Marques, F.C., Neves, A.: Min-max theory and the Willmore conjecture. Ann. Math. 179(2), 683–782 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marques, F.C., Neves, A.: The Willmore conjecture. Jahresbericht der Deutschen Mathematiker-Vereinigung 116(4), 201–222 (2014). https://doi.org/10.1365/s13291-014-0104-8

    Article  MathSciNet  MATH  Google Scholar 

  27. Mondino, A., Nguyen, H.T.: A gap theorem for Willmore tori and an application to the Willmore flow. Nonlinear Anal. Theory Methods Appl. 102, 220–225 (2014). https://doi.org/10.1016/j.na.2014.02.015

    Article  MathSciNet  MATH  Google Scholar 

  28. Paragoda, T.: Application of the moving frame method to deformed Willmore surfaces in space forms. J. Geom. Phys. 128, 199–208 (2018). https://doi.org/10.1016/j.geomphys.2018.02.010

    Article  MathSciNet  MATH  Google Scholar 

  29. Séquin, C.H., Chang, P.Y., Moreton, H.P.: Scale-Invariant Functional for smooth curves and surfaces. In: Hagen H., Farin G., Noltemeier H. (eds) Geometric modelling. computing supplement, vol 10. Springer, Vienna (1995). https://doi.org/10.1007/978-3-7091-7584-2_21

  30. Shubin, M.A.: Pseudodifferential operators and spectral theory. Springer, Berlin (2001). https://doi.org/10.1007/978-3-642-56579-3

    Book  MATH  Google Scholar 

  31. Siegel, D.P.: Determining the ratio of the Gaussian curvature and bending elastic moduli of phospholipids from QII phase unit cell dimensions. Biophys. J. 91(2), 608–618 (2006). https://doi.org/10.1529/biophysj.106.085225

    Article  Google Scholar 

  32. Sjöstrand, F.S., Andersson-Cedergren, E., Dewey, M.M.: The ultrastructure of the intercalated discs of frog, mouse and guinea pig cardiac muscle. J. Ultrastruct. Res. 1(3), 271–287 (1958). https://doi.org/10.1016/S0022-5320(58)80008-8

    Article  Google Scholar 

  33. Toda, M., Athukorallage, B.: Geometric models for secondary structures in proteins. In: Mladenov IM, Ludu A, Yoshioka A (eds) Geometry, integrability and quantization XVI, pp. 282–300. Avangard Prima, Sofia (2015). https://doi.org/10.7546/giq-16-2015-282-300

  34. Toda, M., Zhang, F., Athukorallage, B.: Elastic surface model for beta-barrels: geometric, computational, and statistical analysis. Proteins Struct. Funct. Bioinform. 86(1), 35–42 (2017). https://doi.org/10.1002/prot.25400

    Article  Google Scholar 

  35. Tu, L.: Differential Geometry: Connections, Curvature, and Characteristic Classes. Graduate Texts in Mathematics. Springer International Publishing (2017). https://books.google.com/books?id=bmsmDwAAQBAJ. Accessed 13 Aug 2018

  36. Tu, Z.C., Ou-Yang, Z.C.: A geometric theory on the elasticity of bio-membranes. J. Phys. A Math. Gen. 37(47), 11407–11429 (2004). https://doi.org/10.1088/0305-4470/37/47/010

    Article  MathSciNet  MATH  Google Scholar 

  37. Viswanathan, K., Parthasarathy, R.: A conformal field theory of extrinsic geometry of 2-d surfaces. Ann. Phys. 244(2), 241–261 (1995). https://doi.org/10.1006/aphy.1995.1112

    Article  MathSciNet  MATH  Google Scholar 

  38. Weiner, J.L.: On a problem of Chen, Willmore, et al. Indiana Univ. Math. J. 27(1), 19–35 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  39. White, J.H.: A global invariant of conformal mappings in space. Proc. Am. Math. Soc. 38(1), 162 (1973). https://doi.org/10.1090/s0002-9939-1973-0324603-1

    Article  MathSciNet  MATH  Google Scholar 

  40. Willmore, T.J.: Note on embedded surfaces. An. Sti. Univ.“Al. I. Cuza” Iasi Sect. I a Mat.(NS) B 11, 493–496 (1965)

    MathSciNet  MATH  Google Scholar 

  41. Yang, Y.: Topological bounds on bending energy for lipid vesicles. Phys. Rev. E (2018). https://doi.org/10.1103/PhysRevE.97.062409

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Gruber.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Note the following conventions:

  • Einstein summation is assumed throughout, so that any index repeated twice in an expression (once up and once down) will be contracted over its appropriate range.

  • Differentiation of a function f with respect to the variable \(x^j\) is denoted by \(f_j\).

  • Given a t-parametrized variation, the variational derivative operator is denoted by \(\delta = (\mathrm{d}/dt)\big |_{t=0}\).

Proof

(Proof of Lemma 1) First, there is the variation of the metric: without loss of generality, assume \(\langle \mathbf {r}_i,\mathbf {r}_j \rangle = 0\) on \(M_t\). Using \(\langle \mathbf {N}, \mathbf {r}_j \rangle = 0\),

$$\begin{aligned} \begin{aligned} \delta g_{ij}&= \frac{d}{\mathrm{d}t} \big \langle \mathbf {r}_i, \mathbf {r}_j \big \rangle \bigg |_{t=0} = 2 \big \langle (\delta \mathbf {r})_i, \mathbf {r}_j \big \rangle = 2 \langle u_i \mathbf {N} + u\mathbf {N}_i , \mathbf {r}_j \rangle \\&= 2u_i \langle \mathbf {N}, \mathbf {r}_j \rangle + 2u \langle \mathbf {N}_i, \mathbf {r}_j \rangle = -2uh_{ij}. \end{aligned} \end{aligned}$$
(62)

Since \(g^{il}g_{lk}=\delta _{k}^i\), it follows that

$$\begin{aligned} (\delta g^{il})g_{lk} = -g^{il}(\delta g_{lk}) = 2ug^{il}h_{lk}, \end{aligned}$$
(63)

and hence

$$\begin{aligned} \delta g^{ij} = 2ug^{il}g^{jk}h_{lk} = 2uh^{ij}. \end{aligned}$$
(64)

Using this, there is the variation of the area element: Recall the Jacobi formula

$$\begin{aligned} \begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \det A = \det A \; \mathrm {tr} \left( A^{-1} \frac{\mathrm{d}A}{\mathrm{d}t}\right) . \end{aligned} \end{aligned}$$
(65)

Letting \(\mathbf {g} = g_i^j\) be the matrix representation of the metric, it follows that

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}\det (\mathbf {g}) = \det (\mathbf {g}) \; \mathrm {tr} \left( \mathbf {g}^{-1} \frac{d\mathbf {g}}{\mathrm{d}t}\right) = \det (\mathbf {g}) (-2ug^{ij}h_{ij}) = -4 Hu \det (\mathbf {g}). \end{aligned}$$
(66)

Using (66), the variation of the surface area functional \(\mathcal {A}\) is seen to be

$$\begin{aligned} \begin{aligned} \delta \mathcal {A}&= \delta \int _M \mathrm{d}S = \int _U \delta \sqrt{\det ({\mathbf {g}})} \, dA = \int _U \frac{1}{2\sqrt{\det ({\mathbf {g}})}} \, \delta (\det ({\mathbf {g}})) \, dA \\&= \int _U 2 Hu \sqrt{\det ({\mathbf {g}})} \, dA = \int _M -2Hu \, \mathrm{d}S. \end{aligned} \end{aligned}$$
(67)

Using (67) and observing the commutativity of d and \(\delta \) yields the variation of the area element \(\mathrm{d}S\),

$$\begin{aligned} \delta (\mathrm{d}S) = d(\delta \mathcal {A}) = d \int _M -2 Hu \, \mathrm{d}S = -2 Hu \, \mathrm{d}S. \end{aligned}$$
(68)

It is now necessary to compute the variation of the shape operator \(h = h_{ij}\, dx^i \otimes dx^j\). Observe,

$$\begin{aligned} \delta (h_{ij}) = \delta \langle \mathbf {N}, \mathbf {r}_{ij} \rangle = \langle \delta \mathbf {N}, \mathbf {r}_{ij} \rangle + \langle \mathbf {N}, \delta \mathbf {r}_{ij} \rangle . \end{aligned}$$
(69)

It is advantageous to compute each term of (69) separately. Since \(\mathbf {r}_i,\mathbf {r}_j\) is a basis for TM at each point, the variation of the normal field can be expressed as \(\delta \mathbf {N} = c^i\mathbf {r}_i\) for some functions \(c^i\), so that

$$\begin{aligned} \langle \delta \mathbf {N}, \mathbf {r}_j \rangle = \langle c^i \mathbf {r}_i, \mathbf {r}_j \rangle = c^i = -\langle \mathbf {N}, \delta \mathbf {r}_j \rangle = -\langle \mathbf {N}, u_i \mathbf {N} + u\mathbf {N}_i \rangle = -u_i, \end{aligned}$$
(70)

where it was used again that \(\langle \mathbf {N}, \mathbf {r}_j \rangle = \langle \mathbf {N}, \mathbf {N}_j \rangle = 0\). It follows that \(\delta \mathbf {N} = -g^{ij}u_i\mathbf {r}_j\), whereby using (9) and working in normal coordinates one sees

$$\begin{aligned} \big \langle \delta \mathbf {N}, \mathbf {r}_{ij} \big \rangle = -\big \langle u^l\mathbf {r}_l, (h_{ij}\mathbf {N} + \varGamma _{ij}^k \mathbf {r}_k - g_{ij}k_0\mathbf {r}) \big \rangle = g_{ij}k_0u. \end{aligned}$$
(71)

Further, by (10)

$$\begin{aligned} \begin{aligned} \langle \mathbf {N},\delta \mathbf {r}_{ij} \rangle&= \langle \mathbf {N}, (u\mathbf {N})_{ij} \rangle = u_{ij}+ u \langle \mathbf {N}, \mathbf {N}_{ij} \rangle = u_{ij} -u\langle h_i^l \mathbf {r}_l, h_j^k \mathbf {r}_k \rangle \\&= u_{ij} - uh_{il}h^l_j. \end{aligned} \end{aligned}$$
(72)

Therefore, the variation of the second fundamental form is

$$\begin{aligned} \delta (h_{ij}) = \langle \delta \mathbf {N}, \mathbf {r}_{ij} \rangle + \langle \mathbf {N}, \delta \mathbf {r}_{ij} \rangle = g_{ij}k_0u + u_{ij} - uh_{il}h_j^l, \end{aligned}$$
(73)

and it is now straightforward to compute \(\delta (2H)\). Indeed, it follows that

$$\begin{aligned} \begin{aligned} \delta (2H)&= \delta (g^{ij}h_{ij}) = (\delta g^{ij})h_{ij} + g^{ij}(\delta h_{ij}) \\&= 2uh^{ij}h_{ij} + g^{ij}(u_{ij} - uh_{il}h_j^l + g_{ij}k_0u)\\&= \varDelta {u}+u(4H^2-2K+4k_0). \end{aligned} \end{aligned}$$
(74)

Further, there is the variation of the norm of the second fundamental form,

$$\begin{aligned} \begin{aligned} \delta |h|^2&= \delta (h^{ij}h_{ij}) = \delta (g^{ik}g^{jl}h_{kl}h_{ij}) = 2uh^{ik}g^{jl}h_{kl}h_{ij} + 2uh^{jl}g^{ik}h_{kl}h_{ij} \\&\quad + g^{ik}g^{jl}(g_{kl}k_0u + u_{kl} - uh_{ks}h^s_l)h_{ij} + g^{ik}g^{jl}h_{kl}(g_{ij}k_0u + u_{ij} - uh_{is}h^s_j) \\&= 2uh^{ik}h^j_k h_{ij} + 4Huk_0 + 2\langle h,\text {Hess}\,u\rangle \\&= 2(8H^3-6HK+8Hk_0)u + 2\langle h,\text {Hess}\,u \rangle , \end{aligned}\qquad \end{aligned}$$
(75)

where it was used that \(8H^3 = (\kappa _1+\kappa _2)^3 = \kappa _1^3 + \kappa _2^3 + 6H(K-k_0)\). The variation of the extrinsic Gauss curvature \(K_E\) now follows, since \(\delta |h|^2 = \delta (4H^2 - 2K + 2k_0)\), so

$$\begin{aligned} \delta K_E = 2H\,\delta (2H) - \frac{1}{2}\delta |h|^2 = 2H\varDelta u - \langle h,\text {Hess}\,u\rangle + 2HKu. \end{aligned}$$
(76)

Since the variation of the intrinsic Gauss curvature K satisfies \(\delta K = \delta (K_E + k_0)\) and \(k_0\) is constant, we have \(\delta K = \delta K_E\), completing the calculation. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruber, A., Toda, M. & Tran, H. On the variation of curvature functionals in a space form with application to a generalized Willmore energy. Ann Glob Anal Geom 56, 147–165 (2019). https://doi.org/10.1007/s10455-019-09661-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-019-09661-0

Keywords

Mathematics Subject Classification

Navigation