Skip to main content
Log in

Discrete Hamiltonian Variational Mechanics and Hamel’s Integrators

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

A Correction to this article was published on 15 February 2023

This article has been updated

Abstract

Exact variational integrators were exposed in the context of Lagrangian mechanics in Marsden and West (2001). These integrators sample the trajectories of holonomic mechanical systems and are useful for developing practical mechanical integrators. This paper introduces an exact variational integrator for Hamel’s equations, which are interpreted as a noncanonical form of Hamilton’s equations. This exact Hamel integrator is then adopted for a systematic construction of low-order constraint-preserving integrators for nonholonomic mechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Change history

References

  • An, Z., Gao, S., Shi, D., Zenkov, D.V.: A variational integrator for the Chaplygin–Timoshenko Sleigh. J. Nonlinear Sci. 30, 1381–1419 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, vol. 60, 2nd edn. Springer, New York (1989)

    Book  Google Scholar 

  • Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  • Bain, M., Wu, B., Zenkov, D.V.: On Hamel’s Integrators, unpublished (2022)

  • Ball, K. R.: Structure Preserving Integrators and Hamel’s Equations, Ph.D. thesis, North Carolina State University (2013)

  • Ball, K.R., Zenkov, D.V.: Hamel’s formalism and variational integrators. In: Chang, D.E., Holm, D.D., Patrick, G., Ratiu, T. (eds.) Geometry, Mechanics, and Dynamics: The Legacy of Jerry Marsden. Fields Institute Communications, vol. 73, pp. 477–506. Springer, New York (2015)

    Chapter  Google Scholar 

  • Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.: Nonholonomic mechanical systems with symmetry. Arch. Rational Mech. Anal. 136, 21–99 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch, A.M., Marsden, J.E., Zenkov, D.V.: Quasivelocities and symmetries in nonholonomic systems. Dyn. Syst. Int. J. 24, 187–222 (2009)

    Article  MATH  Google Scholar 

  • Boltzmann, L.: Über die From der Lagrangerchen Gleichungen für nichtholonome generalisierte Koordinaten. Sitzungsberichte der Mathematisch-Naturwissenschaftliche Akademie der Wissenschaften zu Wien CXI, 1603–1614 (1902)

    MATH  Google Scholar 

  • Bou-Rabee, N., Marsden, J.E.: Hamilton–Pontryagin integrators on Lie Groups Part I: introduction and structure-preserving properties. Found. Comput. Math. 9, 197–219 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Chaplygin, S.A.: On the rolling of a ball on a horizontal plane. Mat. Sbornik 24, 139–168 (1903)

    Google Scholar 

  • Chetaev, N.G.: On Gauss’ principle. Izv. Fiz-Mat. Obsc. Kazan. Univ. Ser. 3 6, 68–71 (1932–1933). (Russian)

  • Chetaev, N.G.: Theoretical Mechanics. Springer, New York (1989)

    MATH  Google Scholar 

  • Cortés, J., Martínez, S.: Nonholonomic integrators. Nonlinearity 14, 1365–1392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Euler, L.: Decouverte d’un nouveau principe de Mecanique. Mémoires de l’académie des sciences de Berlin 6, 185–217 (1752)

    Google Scholar 

  • Euler, L.: Principes généraux de l’état d’équilibre des fluides. Mémoires de l’académie des sciences de Berlin 11, 217–273 (1757a)

    Google Scholar 

  • Euler, L.: Principes généraux du mouvement des fluides. Mémoires de l’académie des sciences de Berlin 11, 274–315 (1757b)

    Google Scholar 

  • Fedorov, Yu.N.: A discretization of the nonoholonomic Chaplygin sphere problem. SIGMA 3, 044 (2007)

    MATH  Google Scholar 

  • Fedorov, Yu.N., Zenkov, D.V.: Discrete nonholonomic LL systems on Lie groups. Nonlinearity 18, 2211–2241 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Fedorov, Y.N., Zenkov, D.V.: Dynamics of the discrete Chaplygin Sleigh. Disc. Cont. Dyn. Syst. (extended volume), 258–267 (2005b)

  • Hamel, G.: Die Lagrange-Eulersche Gleichungen der Mechanik. Z. Math. Phys. 50, 1–57 (1904)

    MATH  Google Scholar 

  • Hamilton, W.R.: On a general method in dynamics, part I. Philos. Trans. R. Soc. Lond. 124, 247–308 (1834)

    Google Scholar 

  • Hamilton, W.R.: On a general method in dynamics, part II. Philos. Trans. R. Soc. Lond. 125, 95–144 (1835)

    Google Scholar 

  • Holm, D.: Geometric Mechanics, Part II: Rotating, Translating, and Rolling, 2nd edn. Imperial College Press, London (2011)

    Book  MATH  Google Scholar 

  • Kobilarov, M., Marsden, J.E., Sukhatme, G.S.: Geometric discretization of nonholonomic systems with symmetries. Discret. Contin. Dyn. Syst. Ser. S 3, 61–84 (2010)

    MathSciNet  MATH  Google Scholar 

  • Kozlov, V.V.: Realization of nonintegrable constraints in classical mechanics. Sov. Phys. Dokl. 28, 735–737 (1983)

    MATH  Google Scholar 

  • Kozlov, V.V.: The problem of realizing constraints in dynamics. J. Appl. Math. Mech. 56, 594–600 (1992)

    Article  MathSciNet  Google Scholar 

  • Lagrange, J.L.: Mécanique Analytique. Chez la Veuve Desaint, Paris (1788)

  • Lall, S., West, M.: Discrete variational Hamiltonian mechanics. J. Phys. A Math. Gen. 39, 5509–5519 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Leok, M., Zhang, J.: Discrete Hamiltonian variational integrators. IMA J. Numer. Anal. 31, 1497–1532 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Lynch, C., Zenkov, D.: Stability of stationary motions of discrete-time nonholonomic systems. In: Kozlov, V.V., Vassilyev, S.N., Karapetyan, A.V., Krasovskiy, N.N., Tkhai, V.N., Chernousko, F.L. (eds.) Problems of Analytical Mechanics and Stability Theory. Collection of Papers Dedicated to the Memory of Academician Valentin V. Rumyantsev, Fizmatlit, Moscow, pp. 259–271 (2009). ((Russian))

  • Ma, Z., Rowley, C.: Lie-Poisson integrators: a Hamiltonian, variational approach. Int. J. Numer. Methods Eng. 82, 1609–1644 (2010)

    MathSciNet  MATH  Google Scholar 

  • Maggi, G.A.: Di alcune nuove forma della equazioni della dinamica aplicabile ai sistemi anolonomi. Atti della Reale Accademia Nozionale dei Lincei, Rendiconti Classe fisiche e mathematiche, Ser. 5(10), 287–291 (1901)

    MATH  Google Scholar 

  • Marsden, J.E.: Lectures on Mechanics. London Mathematical Society Lecture Note Series, vol. 174. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  • Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Texts in Appl. Math., vol. 17, 2nd edn. Springer, New York (1999)

    Book  MATH  Google Scholar 

  • Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Neimark, Ju.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, vol. 33. AMS, Providence (1972)

    MATH  Google Scholar 

  • Poincaré, H.: Sur une forme nouvelle des équations de la mécanique. C.R. Acad. Sci. 132, 369–371 (1901)

    MATH  Google Scholar 

  • Shi, D., Berchenko-Kogan, Y., Zenkov, D.V., Bloch, A.M.: Hamel’s formalism for infinite-dimensional mechanical systems. J. Nonlinear Sci. 27, 241–283 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Suslov, G.K.: Theoretical Mechanics, 3rd edn. GITTL, Moscow-Leningrad (1946)

    Google Scholar 

  • Volterra, V.: Sopra una classe di equazioni dinamiche. Sulla integraizione di una classe di equazioni dinamiche, Atti della Reale Accademia della Scienze di Torino 33, 451 (1898)

    MATH  Google Scholar 

  • Wang, L., An, Z., Shi, D.: Hamel’s field variational integrator for geometrically exact beam. Acta Scientiarum Naturalium Universitatis Pekinensis 52, 692–698 (2016). ((Chinese))

    MathSciNet  MATH  Google Scholar 

  • Zenkov, D.V., Leok, M., Bloch, A.M.: Hamel’s formalism and variational integrators on a sphere. Proc. CDC 51, 7504–7510 (2012)

Download references

Acknowledgements

We would like to thank the reviewers for helpful remarks and Benliang Wang for assistance with simulations. The research of SG and DS was partially supported by NSFC Grants 12272037, 12232009, and 11872107. The research of DVZ was partially supported by NSF grants DMS-0908995 and DMS-1211454. DVZ would like to acknowledge support and hospitality of the Beijing Institute of Technology, where a part of this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghua Shi.

Additional information

Communicated by Arash Yavari.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Figure 1 has been updated.

Induced Variations and Discrete Hamel’s Equations

Induced Variations and Discrete Hamel’s Equations

Using the discrete kinematic equation (3.3), one can derive the induced variations \(\delta \xi _{k+\alpha }\) and the corresponding version of discrete Hamel’s equations as follows.

Taking a variation of (3.3) gives:

$$\begin{aligned} \tfrac{1}{\Delta t}\big (\delta x_{k+1} - \delta x_k\big )&= \delta \Psi _{x_{k+\alpha }}\,\xi _{k+\alpha } + \Psi _{x_{k+\alpha }}\,\delta \xi _{k+\alpha }\\&= {\textbf{i}}_{\delta x_{k+\alpha }} d\Psi _{x_{k+\alpha }} \xi _{k+\alpha } + \Psi _{x_{k+\alpha }}\,\delta \xi _{k+\alpha }\\&= {\textbf{i}}_{(1-\alpha )\delta x_k+\alpha \delta x_{k+1}} d\Psi _{x_{k+\alpha }} \xi _{k+\alpha }, + \Psi _{x_{k+\alpha }}\,\delta \xi _{k+\alpha } \end{aligned}$$

which implies

$$\begin{aligned} \delta \xi _{k+\alpha } = \Psi _{x_{k+\alpha }}^{-1} \tfrac{1}{\Delta t}\big (\delta x_{k+1} - \delta x_k\big ) - \Psi _{x_{k+\alpha }}^{-1} {\textbf{i}}_{(1-\alpha )\delta x_k+\alpha \delta x_{k+1}} d\Psi _{x_{k+\alpha }} \xi _{k+\alpha }. \end{aligned}$$

Next, using \(\delta x_k = \Psi _{x_k}\eta _k\) and taking a variation of the action sum (3.5), we obtain

$$\begin{aligned} \delta a_{\textrm{d}}&= \delta \sum _{k=0}^{N-1} l _{k+\alpha }\\&= \sum _{k=0}^{N-1} D_1 l _{k+\alpha } \big ((1-\alpha )\delta x_k + \alpha \delta x_{k+1}\big ) + D_2 l_ {k+\alpha }\Psi _{x_{k+\alpha }}^{-1}\big ( \tfrac{1}{\Delta t} (\delta x_{k+1}-\delta x_k) \\&\quad - {\textbf{i}}_{(1-\alpha )\delta x_k+\alpha \delta x_{k+1}} d\Psi _{x_{k+\alpha }} \xi _{k+\alpha })\\&= \sum _{k=1}^{N-1} \bigg ( \Big ((1-\alpha ) D_1 l_ {k+\alpha } \Psi _{x_k} + \alpha D_1 l_ {k-1+\alpha } \Psi _{x_{k}}\\&\quad +\tfrac{1}{\Delta t} \big (D_2 l_ {k-1+\alpha } \Psi _{x_{k-1+\alpha }}^{-1} \Psi _{x_k} - D_2 l_{k+\alpha } \Psi _{x_{k+\alpha }}^{-1} \Psi _{x_k}\big )\Big )\eta _k\\&\quad - (1-\alpha )D_2 l_ {k+\alpha } \Psi _{x_{k+\alpha }}^{-1} {\textbf{i}}_{\Psi _{x_k} \eta _k} d\Psi _{x_{k+\alpha }} \xi _{k+\alpha }\\&\quad - \alpha D_2 l_ {k-1+\alpha } \Psi _{x_{k-1+\alpha }}^{-1} {\textbf{i}}_{\Psi _{x_k} \eta _k} d\Psi _{x_{k-1+\alpha }} \xi _{k-1+\alpha }\bigg ), \end{aligned}$$

where

$$\begin{aligned} l_{k+\alpha } = l_{\textrm{d}} (x_{k+\alpha }, \xi _{k+\alpha }). \end{aligned}$$

Thus, \(\delta a_{\textrm{d}}=0\) for each variation with fixed ends if and only if the equations

$$\begin{aligned}&\tfrac{1}{\Delta t} \big (D_2 l_ {k-1+\alpha } \Psi _{x_{k-1+\alpha }}^{-1} \Psi _{x_k} - D_2 l_ {k+\alpha } \Psi _{x_{k+\alpha }}^{-1} \Psi _{x_k}\big ) + (1-\alpha ) D_1 l_ {k+\alpha } \Psi _{x_k} \\&\quad + \alpha D_1 l_ {k-1+\alpha } \Psi _{x_{k}} - (1-\alpha )D_2 l_ {k+\alpha } \Psi _{x_{k+\alpha }}^{-1} {\textbf{i}}_{\Psi _{x_k}} d\Psi _{x_{k+\alpha }} \xi _{k+\alpha } \\&\quad - \alpha D_2 l_ {k-1+\alpha } \Psi _{x_{k-1+\alpha }}^{-1} {\textbf{i}}_{\Psi _{x_k}} d\Psi _{x_{k-1+\alpha }} \xi _{k-1+\alpha } =0 \end{aligned}$$

hold.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Shi, D. & Zenkov, D.V. Discrete Hamiltonian Variational Mechanics and Hamel’s Integrators. J Nonlinear Sci 33, 26 (2023). https://doi.org/10.1007/s00332-022-09875-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-022-09875-w

Keywords

Mathematics Subject Classification

Navigation