Skip to main content
Log in

Relaxation to Fractional Porous Medium Equation from Euler–Riesz System

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We perform asymptotic analysis for the Euler–Riesz system posed in either \({\mathbb {T}}^d\) or \({\mathbb {R}}^d\) in the high-force regime and establish a quantified relaxation limit result from the Euler–Riesz system to the fractional porous medium equation. We provide a unified approach for asymptotic analysis regardless of the presence of pressure in the case of repulsive Riesz interactions, based on the modulated energy estimates, the Wasserstein distance of order 2, and the bounded Lipschitz distance. For the attractive Riesz interaction case, we consider the periodic domain and estimate a lower bound on the modulated internal energy to handle the modulated interaction energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Our previous work Choi and Jeong suggests that the Cauchy problem for the system (1.1) is ill-posed for the pressureless and attractive case, i.e., \(c_K >0\) and \(c_P = 0\).

References

  • Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2ndedn. Lectures in Mathematics. ETH Zürich, Birkhäuser Verlag, Basel (2008)

  • Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic Equations and Asymptotic Theory. Series in Applied Mathematics (Paris), vol. 4, Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris, Edited and with a foreword by Benoît Perthame and Laurent Desvillettes (2000)

  • Brenier, Y.: Convergence of the Vlasov–Poisson system to the incompressible Euler equations. Commun. Partial Differ. Equ. 25(3–4), 737–754 (2000)

    Article  MathSciNet  Google Scholar 

  • Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  • Caffarelli, L., Soria, F., Vázquez, J.L.: Regularity of solutions of the fractional porous medium flow. JEMS 15(5), 1701–1746 (2013)

    Article  MathSciNet  Google Scholar 

  • Carrillo, J.A., Choi, Y.P.: Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces. Ann. Inst. H. Poincaré Anal. Non Linéaire 37(4), 925–954 (2020)

    Article  MathSciNet  Google Scholar 

  • Carrillo, J.A., Choi, Y.P.: Mean-field limits: from particle descriptions to macroscopic equations. Arch. Ration. Mech. Anal. 241(3), 1529–1573 (2021)

    Article  MathSciNet  Google Scholar 

  • Carrillo, J.A., Choi, Y.-P., Tse, O.: Convergence to equilibrium in Wasserstein distance for damped Euler equations with interaction forces. Commuun. Math. Phys. 365(1), 329–361 (2019)

    Article  MathSciNet  Google Scholar 

  • Carrillo, J.A., Peng, Y., Wróblewska-Kamińska, A.: Relative entropy method for the relaxation limit of hydrodynamic models. Netw. Heterog. Med. 15(3), 369–387 (2020)

    Article  MathSciNet  Google Scholar 

  • Choi, Y.-P.: Large friction limit of pressureless Euler equations with nonlocal forces. J. Differ. Equ. 299, 196–228 (2021)

    Article  MathSciNet  Google Scholar 

  • Choi, Y.-P., Jeong, I.-J.: On well-posedness and singularity formation for the Euler–Riesz system, preprint

  • Choi, Y.-P., Jeong, I.-J.: Classical solutions for fractional porous medium flow. Nonlinear Anal. 210 (2021), Paper No. 112393, 13

  • Choi, Y.-P., Jung, J.: The pressureless damped Euler–Riesz equations (preprint)

  • Coulombel, J.-F., Goudon, T.: The strong relaxation limit of the multidimensional isothermal Euler equations. Trans. Am. Math. Soc. 359(2), 637–648 (2007)

    Article  MathSciNet  Google Scholar 

  • Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70(2), 167–179 (1979)

    Article  MathSciNet  Google Scholar 

  • Duerinckx, M.: Mean-field limits for some Riesz interaction gradient flows. SIAM J. Math. Anal. 48(3), 2269–2300 (2016)

    Article  MathSciNet  Google Scholar 

  • Figalli, A., Kang, M.-J.: A rigorous derivation from the kinetic Cucker–Smale model to the pressureless Euler system with nonlocal alignment. Anal. PDE 12(3), 843–866 (2019)

    Article  MathSciNet  Google Scholar 

  • Huang, F., Pan, R., Wang, Z.: \(L^1\) convergence to the Barenblatt solution for compressible Euler equations with damping. Arch. Ration. Mech. Anal. 200(2), 665–689 (2011)

    Article  MathSciNet  Google Scholar 

  • Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  Google Scholar 

  • Junca, S., Rascle, M.: Strong relaxation of the isothermal Euler system to the heat equation. Z. Angew. Math. Phys. 53(2), 239–264 (2002)

    Article  MathSciNet  Google Scholar 

  • Lattanzio, C., Tzavaras, A.E.: From gas dynamics with large friction to gradient flows describing diffusion theories. Commun. Partial Differ. Equ. 42(2), 261–290 (2017)

    Article  MathSciNet  Google Scholar 

  • Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. (2) 118(2), 349–374 (1983)

    Article  MathSciNet  Google Scholar 

  • Luo, T., Zeng, H.: Global existence of smooth solutions and convergence to Barenblatt solutions for the physical vacuum free boundary problem of compressible Euler equations with damping. Commun. Pure Appl. Math. 69(7), 1354–1396 (2016)

    Article  MathSciNet  Google Scholar 

  • Marcati, P., Milani, A.: The one-dimensional Darcy’s law as the limit of a compressible Euler flow. J. Differ. Equ. 84(1), 129–147 (1990)

  • Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    Article  MathSciNet  Google Scholar 

  • Petrache, M., Serfaty, S.: Next order asymptotics and renormalized energy for Riesz interactions. J. Inst. Math. Jussieu 16(3), 501–569 (2017)

    Article  MathSciNet  Google Scholar 

  • Hung, N.Q., Matthew, R., Sylvia, S.: Mean-field limits of Riesz-type singular flows with possible multiplicative transport noise (preprint)

  • Saint-Raymond, L.: Hydrodynamic Limits of the Boltzmann Equation. Lecture Notes in Mathematics, vol. 1971. Springer, Berlin (2009)

    Book  Google Scholar 

  • Serfaty, S.: Mean field limit for Coulomb-type flows. Duke Math. J. 169(15), 2887–2935 (2020)

    Article  MathSciNet  Google Scholar 

  • Villani, C.: Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338. Springer, Berlin (2009) Old and new

  • Yau, H.-T.: Relative entropy and hydrodynamics of Ginzburg–Landau models. Lett. Math. Phys. 22(1), 63–80 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for the invaluable comments which significantly improved the quality and readability of this article. YPC has been supported by NRF grant (No. 2017R1C1B2012918) and Yonsei University Research Fund of 2019-22-0212 and 2020-22-0505. IJJ has been supported by the New Faculty Startup Fund from Seoul National University, the Science Fellowship of POSCO TJ Park Foundation, and the National Research Foundation of Korea grant (No. 2019R1F1A1058486).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jee Jeong.

Additional information

Communicated by Pierre Degond.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, YP., Jeong, IJ. Relaxation to Fractional Porous Medium Equation from Euler–Riesz System. J Nonlinear Sci 31, 95 (2021). https://doi.org/10.1007/s00332-021-09754-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09754-w

Keywords

Mathematics Subject Classification

Navigation