Skip to main content
Log in

Spontaneous Periodic Orbits in the Navier–Stokes Flow

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, a general method to obtain constructive proofs of existence of periodic orbits in the forced autonomous Navier–Stokes equations on the three-torus is proposed. After introducing a zero finding problem posed on a Banach space of geometrically decaying Fourier coefficients, a Newton–Kantorovich theorem is applied to obtain the (computer-assisted) proofs of existence. The required analytic estimates to verify the contractibility of the operator are presented in full generality and symmetries from the model are used to reduce the size of the problem to be solved. As applications, we present proofs of existence of spontaneous periodic orbits in the Navier–Stokes equations with Taylor–Green forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arioli, G., Koch, H.: Integration of dissipative partial differential equations: a case study. SIAM J. Appl. Dyn. Syst. 9(3), 1119–1133 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Arioli, G., Koch, H., Terracini, S.: Two novel methods and multi-mode periodic solutions for the Fermi–Pasta–Ulam model. Commun. Math. Phys. 255(1), 1–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Burgers, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)

    Article  MathSciNet  Google Scholar 

  • Caloz, G., Rappaz, J.: Numerical analysis for nonlinear and bifurcation problems. Handb. Numer. Anal. 5, 487–637 (1997)

    MathSciNet  Google Scholar 

  • Castelli, R., Gameiro, M., Lessard, J.-P.: Rigorous numerics for ill-posed PDEs: periodic orbits in the Boussinesq equation. Arch. Ration. Mech. An. 228(1), 129–157 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Castro, A., Córdoba, D., Gómez-Serrano, J.: Global smooth solutions for the inviscid SQG equation. arXiv preprint arXiv:1603.03325 (2016)

  • Cvitanović, P.: Recurrent flows: the clockwork behind turbulence. J. Fluid Mech. 726, 1–4 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Day, S., Lessard, J.-P., Mischaikow, K.: Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal. 45(4), 1398–1424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Dombre, T., Frisch, U., Green, J.M., Hénon, M., Mehr, A., Soward, A.M.: Chaotic streamlines in the ABC flows. J. Fluid Mech. 167, 353–391 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Farwig, R., Okabe, T.: Periodic solutions of the Navier–Stokes equation with inhomogeneous boundary conditions. Ann. Univ. Ferrara Sez. VII Sci. Math. 56, 249–281 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Figueras, J.-L., de la Llave, R.: Numerical computations and computer assisted proofs of periodic orbits of the Kuramoto–Sivashinsky equation. SIAM J. Appl. Dyn. Syst. 16(2), 834–852 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Galdi, G.P.: On bifurcating time-periodic flow of a Navier–Stokes liquid past a cylinder. Arch. Ration. Mech. An. 222(1), 285–315 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Gameiro, M., Lessard, J.-P.: A posteriori verification of invariant objects of evolution equations: periodic orbits in the Kuramoto–Sivashinsky PDE. SIAM J. Appl. Dyn. Syst. 16(1), 687–728 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Gómez-Serrano, J.: Computer-assisted proofs in PDE: a survey. SeMA J. 76(3), 459–484 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Hales, T.C.: A proof of the Kepler conjecture. Ann. Math. 162(3), 1065–1185 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Heywood, J.G., Nagata, W., Xie, W.: A numerical based existence theorem for the Navier–Stokes equation. J. Math. Fluid Mech. 1, 5–23 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Hsia, C.-H., Jung, C.-Y., Nguyen, T.B., Shiue, M.-C.: On time periodic solutions, asymptotic stability and bifurcations of Navier–Stokes equations. Numer. Math. 135, 607–638 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Iooss, G.: Existence et stabilité de la solution périodique secondaire intervenant dans les problèmes d’évolution du type Navier–Stokes. Arch. Ration. Mech. An. 47(4), 301–329 (1972)

    Article  MATH  Google Scholar 

  • Iudovich, V.: The onset of auto-oscillations in a fluid. PMM J. Appl. Math. Mech. 35(4), 587–603 (1971)

    Article  MathSciNet  Google Scholar 

  • Joseph, D., Sattinger, D.: Bifurcating time periodic solutions and their stability. Arch. Ration. Mech. An. 45(2), 79–109 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Kaniel, S., Shinbrot, M.: A reproductive property of Navier–Stokes equations. Arch. Ration. Mech. An. 24(5), 363 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  • Kato, H.: Existence of periodic solutions of the Navier–Stokes equations. J. Math. Anal. Appl. 208(1), 141–157 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Kawahara, G., Kida, S.: Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291–300 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, M., Nakao, M.T., Watanabe, Y., Nishida, T.: A numerical verification method of bifurcating solutions for 3-dimensional Rayleigh–Bénard problems. Numer. Math. 111, 389–406 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Koch, H., Schenkel, A., Wittwer, P.: Computer-assisted proofs in analysis and programming in logic: a case study. SIAM Rev. 38(4), 565–604 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Kovasznay, L.: Hot-wire investigation of the wake behind cylinders at low Reynolds numbers. Proc. R. Soc. Lond. Ser. A Math. Phys. 198(1053), 174–190 (1949)

    Google Scholar 

  • Kozono, H., Nakao, M.: Periodic solutions of the Navier–Stokes equations in unbounded domains. Tohoku Math. J. 48(1), 33–50 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, Volume 112 of Applied Mathematical Sciences. Springer, Berlin (2013)

    Google Scholar 

  • Lanford III, O.E.: A computer-assisted proof of the Feigenbaum conjectures. Bull. Am. Math. Soc. (N.S.) 6(3), 427–434 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Maremonti, P.: Existence and stability of time-periodic solutions to the Navier–Stokes equations in the whole space. Nonlinearity 4(2), 503–529 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Mischaikow, K., Mireles James, J.D.: Encyclopedia of Applied and Computational Mathematics, chapter Computational Proofs in Dynamics. Springer (2015)

  • Nakao, M.T.: Numerical verification methods for solutions of ordinary and partial differential equations. Numer. Funct. Anal. Optim. 22(3–4), 321–356 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Plum, M.: Computer-assisted enclosure methods for elliptic differential equations. Linear Algebra Appl. 324(1–3), 147–187 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Robertson, N., Sanders, D., Seymour, P., Thomas, R.: The four-colour theorem. J. Combin. Theory Ser. B 70(1), 2–44 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Rump, S.M.: Intlab—interval laboratory. In: Developments in Reliable Computing, pp. 77–104. Springer (1999)

  • Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic. Acta Numer. 19, 287–449 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Sánchez Umbría, J., Net, M.: Numerical continuation methods for large-scale dissipative dynamical systems. Eur. Phys. J. Spec. Top. 225, 2465–2486 (2016)

    Article  Google Scholar 

  • Serrin, J.: A note on the existence of periodic solutions of the Navier-Stokes equations. Arch. Ration. Mech. An. 3(2), 120–122 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  • Serrin, J.: On the stability of viscous fluid motions. Arch. Ration. Mech. An. 3(1), 1–13 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  • Sipp, D., Jacquin, L.: Elliptic instability in two-dimensional flattened Taylor–Green vortices. Phys. Fluids 10(4), 839–849 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Sutera, S., Skalak, R.: The history of Poiseuille law. Ann. Rev. Fluid Mech. 25, 1–19 (1993)

    Article  MathSciNet  Google Scholar 

  • Takeshita, A.: On the reproductive property of the \(2\)-dimensional Navier-Stokes equations. J. Fac. Sci. Univ. Tokyo Sect. I(16), 297–311 (1969)

    MathSciNet  MATH  Google Scholar 

  • Taylor, G.: Stability of a viscous liquid contained between two rotating cylinders. Proc. R. Soc. Lond. Ser. A 102(718), 541–542 (1923)

    Article  MATH  Google Scholar 

  • Taylor, G., Green, A.: Mechanism of the production of small eddies from large ones. Proc. R. Soc. Lond. Ser. A Math. Phys. 158(A895), 0499–0521 (1937)

    Google Scholar 

  • Teramoto, Y.: On the stability of periodic solutions of the Navier–Stokes equations in a noncylindrical domain. Hiroshima Math. J. 13(3), 607–625 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Tucker, W.: A rigorous ODE Solver and Smale’s 14th Problem. Found. Comput. Math. 2(1), 53–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Tucker, W.: Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press, Princeton (2011)

    Book  MATH  Google Scholar 

  • van den Berg, J.B., Breden, M., Lessard, J.-P., van Veen, L.: MATLAB code for “Spontaneous periodic orbits in the Navier–Stokes flow”. (2019) https://www.math.vu.nl/~janbouwe/code/navierstokes/

  • van den Berg, J.B., Lessard, J.-P.: Rigorous numerics in dynamics. Not. Am. Math. Soc. 62(9), 1057–1061 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • van den Berg, J.B., Williams, J.F.: Rigorously computing symmetric stationary states of the Ohta–Kawasaki problem in three dimensions. SIAM J. Math. Anal. 51(1), 131–158 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • van Veen, L.: Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, chapter A Brief History of Simple Invariant Solutions in Turbulence, pp. 217–232. Springer (2019)

  • Watanabe, Y.: A computer-assisted proof for the Kolmogorov flows of incompressible viscous fluid. J. Comput. Appl. Math. 223, 953–966 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Watanabe, Y.: An efficient verification method for the Kolmogorov problem of incompressible fluid. J. Comput. Appl. Math. 302, 157–170 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Watanabe, Y., Yamamoto, N., Nakao, M.T.: A numerical verification method of solutions for the Navier–Stokes equations. Reliab. Comput. 5, 347–357 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Yamamoto, N.: A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem. SIAM J. Numer. Anal. 35(5), 2004–2013 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Zgliczynski, P.: Rigorous numerics for dissipative partial differential equations II. Periodic orbit for the Kuramoto–Sivashinsky PDE—a computer-assisted proof. Found. Comput. Math. 4(2), 157–185 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Lessard.

Additional information

Communicated by Arnd Scheel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. B. van den Berg: partially supported by NWO-VICI Grant 639033109. M. Breden: partially supported by a Lichtenberg Professorship grant of the VolkswagenStiftung awarded to C. Kuehn. J.-P. Lessard and L. van Veen: supported by NSERC.

Appendix

Appendix

The estimates obtained in Sects. 3 and 4.6 are used as input for Theorem 4.23, which allows us to validate symmetric periodic solutions \(\omega \) of the vorticity equation, with explicit error bounds, as illustrated in Sect. 5. In this appendix, we describe how to recover errors bounds for the associated velocity u and pressure p that solve the Navier–Stokes equations.

We start with a variation, adapted to our framework, of the classical result stating that a curl-free vector field can be written as a gradient, which was used already in the proof of Lemma 2.5.

Lemma 5.6

Let \(\Phi \in \left( {\mathbb {C}}^3\right) ^{{\mathbb {Z}}^4}\) satisfy

$$\begin{aligned} \left\{ \begin{array}{ll} \nabla \times \Phi =0 &{} \\ \Phi _{n}=0, &{} \quad \text {for all } \tilde{n}=0. \end{array}\right. \end{aligned}$$

Then the map \(\Gamma :\left( {\mathbb {C}}^3\right) ^{{\mathbb {Z}}^4} \rightarrow {\mathbb {C}}^{{\mathbb {Z}}^4}\) constructed component-wise as

$$\begin{aligned} (\Gamma \Phi )_n ={\left\{ \begin{array}{ll} -i\Phi ^{(k)}_n/n_k &{} \text {if } n_k \ne 0 \text { for any } k=1,2,3 \\ 0 &{} \text {if } \tilde{n}=0, \end{array}\right. } \end{aligned}$$

is well defined, and \(p=\Gamma \Phi \) satisfies \(\Phi =-\nabla p\).

Proof

To ensure that \(\Gamma \) is well defined, it suffices to show that, for all \(n\in {\mathbb {Z}}^4\) and \(l,m \in \{1,2,3\}\)

$$\begin{aligned} \text {if } n_l,n_m \ne 0 \quad \text { then }\quad \frac{\Phi _n^{(l)}}{n_l}=\frac{\Phi _n^{(m)}}{n_m}. \end{aligned}$$
(5.9)

Indeed, since \(\nabla \times \Phi =0\), we have that for all \(n\in {\mathbb {Z}}^4\) and all \(l,m\in \{1,2,3\}\),

$$\begin{aligned} n_l\Phi _n^{(m)}=n_m\Phi _n^{(l)}, \end{aligned}$$
(5.10)

which immediately yields (5.9). Therefore, \(p=\Gamma \Phi \) is well defined, and we are left to check that \(\Phi =-\nabla p\). If \(\tilde{n}=0\), then we have

$$\begin{aligned} \Phi _n=-\left( \nabla p\right) _n, \end{aligned}$$

because we assumed \(\Phi _{n}=0\) for all \(\tilde{n}=0\). If \(\tilde{n}\ne 0\), for any \(l\in \{1,2,3\}\) we distinguish between two cases. If \(n_l\ne 0\), then

$$\begin{aligned} -\left( \nabla p\right) _n^{(l)} = -in_l p_n =-in_l\frac{-i \Phi _n^{(l)}}{n_l} = \Phi _n^{(l)}. \end{aligned}$$

If \(n_l= 0\), then \(-\left( \nabla p\right) _n^{(l)}=0\), but there exists an \(m\ne l\) such that \(n_m\ne 0\), and thus, by (5.10) we find \(\Phi _n^{(l)}=0\), i.e., \(-\left( \nabla p\right) _n^{(l)}= \Phi _n^{(l)}\) also holds. \(\square \)

The above lemma can be used in the context of Navier–Stokes equations, to recover the pressure from the velocity. (We recall that the velocity itself is recovered from the vorticity via \(u=M\omega \).) We point out that an alternative (arguably more classical) approach is to define p as the solution of the Poisson equation

$$\begin{aligned} -\Delta p= \nabla \cdot \left( (u\cdot \nabla )u\right) - \nabla \cdot f, \end{aligned}$$
(5.11)

satisfying

$$\begin{aligned} \int _{{\mathbb {T}}^3} p(x,t) \mathrm{d}x = 0. \end{aligned}$$

Indeed, the latter approach is going to be useful in the sequel, as (5.11) allows to recover sharper error bounds for the pressure (compared to using Lemma 5.6 only).

Our aim is to derive error estimates for the velocity and the pressure that can be applied as soon as we have validated a divergence-free solution W of the vorticity equation via Theorem 2.15 or Theorem 4.23.

Lemma 5.7

Assume that for some \(\bar{W}=(\bar{\Omega },\bar{\omega })\in {\mathcal {X}}^{\mathrm{div}}\), \(\eta >1\), we have proved the existence of \(r>0\) and of \(W=(\Omega ,\omega )\in {\mathcal {B}}_{{\mathcal {X}}^{\mathrm{div}}}(\bar{W},r)\) such that \({\mathcal {F}}(W)=0\). Define

$$\begin{aligned} u=M\omega ,\quad \bar{u}=M\bar{\omega }, \quad p=\Gamma \Phi , \end{aligned}$$

where \(\Phi \) is defined in (2.12) and \(\Gamma \) is defined as in Lemma 5.6. We also consider the sequence \(\bar{p}\in {\mathbb {C}}^{{\mathbb {Z}}^4}\) defined as

$$\begin{aligned} \bar{p}_n =\left\{ \begin{array}{ll} 0 &{} \quad \text {if } n=(\tilde{n},n_4)\in {\mathbb {Z}}^3\times {\mathbb {Z}},\ \tilde{n}= 0, \\ -\frac{1}{\tilde{n}^2}\sum _{l=1}^3 n_l \left( \left[ \left( \bar{u}\star \tilde{D}\right) \bar{u}\right] ^{(l)}_n +i f^{(l)}_n\right) &{} \quad \text {if } n=(\tilde{n},n_4)\in {\mathbb {Z}}^3\times {\mathbb {Z}},\ \tilde{n}\ne 0. \end{array}\right. \end{aligned}$$

Then, we have the following error estimates for the velocity and the pressure:

$$\begin{aligned} \left\| u - \bar{u} \right\| _{X} \le r \quad \text {and}\quad \left\| p - \bar{p} \right\| _{\ell ^1_{\eta }} \le \left( 2\left\| \bar{u} \right\| _{X} + r\right) r. \end{aligned}$$

Remark 5.8

As explained in Remark 2.17, these weighted \(\ell ^1\)-norms control the \({\mathcal {C}}^0\)-norms of the errors (explicitly). Notice also that, even though we used \(\eta =1\) to validate the vorticity in Theorem 5.1 and Theorem 5.2, by continuity of the estimates with respect to \(\eta \) we get for free a validation for some \(\tilde{\eta }>1\) (see the proof of Theorem 5.1), and thus, Lemma 5.7 is directly applicable.

Proof

The error estimate for the velocity simply follows from the definition of M:

$$\begin{aligned} \left\| u - \bar{u} \right\| _{{\mathcal {X}}}&= \sum _{m=1}^3 \left\| \left( M(\omega -\bar{\omega })\right) ^{(m)}\right\| _{\ell ^1_{\eta }} \\&\le \sum _{m=1}^3 \left\| \left( \omega -\bar{\omega }\right) ^{(m)}\right\| _{\ell ^1_{\eta }} \\&= \left\| W - \bar{W} \right\| _{{\mathcal {X}}} \\&\le r. \end{aligned}$$

To obtain the error estimate for the pressure, we use the fact that (up) are smooth solutions of Navier–Stokes equations (see Lemma 2.5), and thus, (5.11) holds. In Fourier space, this reduces to

$$\begin{aligned} p_n = \left\{ \begin{array}{ll} 0 &{} \quad \text {if } n=(\tilde{n},n_4)\in {\mathbb {Z}}^3\times {\mathbb {Z}},\ \tilde{n}= 0, \\ -\frac{1}{\tilde{n}^2}\sum _{l=1}^3 n_l \left( \left[ \left( u \star \tilde{D}\right) u\right] ^{(l)}_n +i f^{(l)}_n\right) &{} \quad \text {if } n=(\tilde{n},n_4)\in {\mathbb {Z}}^3\times {\mathbb {Z}},\ \tilde{n}\ne 0. \end{array}\right. \end{aligned}$$

Since both u and \(\bar{u}\) are divergence-free, by Lemma 2.2 we can write, for all \(\tilde{n}\ne 0\),

$$\begin{aligned} p_n&= -\frac{1}{\tilde{n}^2}\sum _{l=1}^3\sum _{m=1}^3 n_l n_m \left[ u^{(m)}*u^{(l)}\right] _n \quad \text {and}\\&\quad \bar{p}_n = -\frac{1}{\tilde{n}^2}\sum _{l=1}^3\sum _{m=1}^3 n_l n_m \left[ \bar{u}^{(m)} *\bar{u}^{(l)}\right] _n. \end{aligned}$$

We then estimate

$$\begin{aligned}&\left\| p - \bar{p} \right\| _{\ell ^1_{\eta }} \\&\quad \le \sum _{l=1}^3\sum _{m=1}^3 \sum _{\tilde{n}\ne 0} \frac{\vert n_l\vert \vert n_m\vert }{\tilde{n}^2} \left( \left[ \vert (u-\bar{u})^{(m)} \vert *\vert u^{(l)}\vert \right] _n + \left[ \vert \bar{u}^{(m)}\vert *\vert (u-\bar{u})^{(l)}\vert \right] _n\right) \eta ^{\left| n\right| _1} \\&\quad \le \sum _{l=1}^3\sum _{m=1}^3 \sum _{\tilde{n}\ne 0} \left( \left[ \vert (u-\bar{u})^{(m)} \vert *\vert u^{(l)}\vert \right] _n +\left[ \vert \bar{u}^{(m)}\vert *\vert (u-\bar{u})^{(l)}\vert \right] _n\right) \eta ^{\left| n\right| _1} \\&\quad \le \sum _{l=1}^3\sum _{m=1}^3 \left( \left\| (u-\bar{u})^{(m)} \right\| _{\ell ^1_{\eta }} \left\| u^{(l)}\right\| _{\ell ^1_{\eta }} + \left\| \bar{u}^{(m)}\right\| _{\ell ^1_{\eta }} \left\| (u-\bar{u})^{(l)}\right\| _{\ell ^1_{\eta }}\right) , \end{aligned}$$

where \(\left| \cdot \right| \) applied to a sequence must be understood component-wise, i.e., \(\vert u^{(l)}\vert \) is the sequence whose nth element is equal to \(\vert u^{(l)}_n\vert \). Finally, we obtain

$$\begin{aligned} \left\| p - \bar{p} \right\| _{\ell ^1_{\eta }}&\le \sum _{m=1}^3 \left\| (u-\bar{u})^{(m)} \right\| _{\ell ^1_{\eta }} \left( \sum _{l=1}^3 \left\| u^{(l)}\right\| _{\ell ^1_{\eta }} + \sum _{l=1}^3 \left\| \bar{u}^{(l)}\right\| _{\ell ^1_{\eta }} \right) \\&\le \sum _{m=1}^3 \left\| (u-\bar{u})^{(m)} \right\| _{\ell ^1_{\eta }} \left( \sum _{l=1}^3 2\left\| \bar{u}^{(l)}\right\| _{\ell ^1_{\eta }} +\sum _{l=1}^3 \left\| (u-\bar{u})^{(l)}\right\| _{\ell ^1_{\eta }} \right) \\&\le \sum _{m=1}^3 \left\| (u-\bar{u})^{(m)} \right\| _{\ell ^1_{\eta }} \left( 2\left\| \bar{u}\right\| _{X} + r\right) \\&\le \left( 2\left\| \bar{u} \right\| _{X} + r\right) r. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van den Berg, J.B., Breden, M., Lessard, JP. et al. Spontaneous Periodic Orbits in the Navier–Stokes Flow. J Nonlinear Sci 31, 41 (2021). https://doi.org/10.1007/s00332-021-09695-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-021-09695-4

Keywords

Mathematics Subject Classification

Navigation