Skip to main content
Log in

Mean-Curvature Flow of Voronoi Diagrams

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study the evolution of grain boundary networks by the mean-curvature flow under the restriction that the networks are Voronoi diagrams for a set of points. For such evolution we prove a rigorous universal upper bound on the coarsening rate. The rate agrees with the rate predicted for the evolution by mean-curvature flow of the general grain boundary networks, namely that the typical grain area grows linearly in time. We perform a numerical simulation which provides evidence that the dynamics achieves the rate of coarsening that agrees with the upper bound in terms of scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, M.P., Grest, G.S., Srolovitz, D.J.: Computer simulation of normal grain growth in three dimensions. Philos. Mag. B 59, 293–329 (1989)

    Article  Google Scholar 

  • Anderson, M.P., Srolovitz, D.J., Grest, G.S., Sahni, P.S.: Computer simulation of grain growth—I. Kinetics. Acta Metall. 32, 783–791 (1984)

    Article  Google Scholar 

  • Barmak, K., Emelianenko, M., Golovaty, D., Kinderlehrer, D., Ta’asan, S.: Towards a statistical theory of texture evolution in polycrystals. SIAM J. Sci. Comput. 30, 3150–3169 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Beck, P.: Interface migration in recrystallization. In: Brick, R. (ed.) Metal Interfaces, pp. 208–247. American Society for Metals, Cleveland (1952)

    Google Scholar 

  • Bellettini, G., Chermisi, M., Novaga, M.: Crystalline curvature flow of planar networks. Interfaces Free Bound. 8, 481–521 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Cahn, J.W.: Stability, microstructural evolution, grain growth, and coarsening in a two-dimensional two-phase microstructure. Acta Metall. Mater. 39, 2189–2199 (1991)

    Article  Google Scholar 

  • Dai, S.: On the shortening rate of collections of plane convex curves by the area-preserving mean curvature flow. SIAM J. Math. Anal. 42, 323–333 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Elsey, M., Esedo\(\bar{\rm g}\)lu, S., Smereka, P.: Diffusion generated motion for grain growth in two and three dimensions. J. Comput. Phys. 228, 8015–8033 (2009)

  • Elsey, M., Esedo\(\bar{\rm g}\)lu, S., Smereka, P.: Large scale simulation of normal grain growth via diffusion generated motion. Proc. R. Soc. Lond. A 467, 381–401 (2011)

  • Fradkov, V.E.: A theoretical investigation of two-dimensional grain growth in the ‘gas’ approximation. Philos. Mag. Lett. 58, 271–275 (1988)

    Article  Google Scholar 

  • Glazier, J.A., Weaire, D.: The kinetics of cellular patterns. J. Phys. Condens. Matter 4, 1867–1894 (1992)

    Article  Google Scholar 

  • Gottstein, G., Shvindlerman, L.: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications. Materials Science & Technology, 2nd edn. Taylor & Francis, Boca Raton (2011)

    Google Scholar 

  • Henseler, R., Niethammer, B., Otto, F.: A reduced model for simulating grain growth. In: Free Boundary Problems (Trento 2002), Vol. 147 of Int. Ser. Numer. Math. Birkhäuser, Basel 2004, 177–187 (2004)

  • Herring, C.: Surface tension as a motivation for sintering. In: Kingston, W. (ed.) The Physics of Powder Metallurgy, pp. 143–179. McGraw-Hill, New York (1951)

    Google Scholar 

  • Herring, C.: The use of classical macroscopic concepts in surface-energy problems. In: Gomer, R., Smith, C. (eds.) Structure and Properties of Solid Surfaces, pp. 5–72. University of Chicago Press, Chicago (1953)

    Google Scholar 

  • Herrmann, M., Laurençot, P., Niethammer, B.: Self-similar solutions to a kinetic model for grain growth. J. Nonlinear Sci. 22, 399–427 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Joyce, D.: On manifolds with corners. In: Janeczko, S., Li, J., Phong, D. (eds.) Advances in Geometric Analysis, pp. 225–258. International Press, Boston (2012)

    Google Scholar 

  • Kinderlehrer, D., Liu, C.: Evolution of grain boundaries. Math. Models Methods Appl. Sci. 11, 713–729 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Kinderlehrer, D., Livshits, I., Ta’asan, S.: A variational approach to modeling and simulation of grain growth. SIAM J. Sci. Comput. 28, 1694–1715 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Klain, D.A., Rota, G.C.: Introduction to geometric probability. Lezioni Lincee. [Lincee Lectures]. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  • Kohn, R.V., Otto, F.: Upper bounds on coarsening rates. Commun. Math. Phys. 229, 375–395 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Lindenbergh, R., van der Kallen W., Siersma, D.: Configuration spaces and limits of Voronoi diagrams. In: Geometry and Topology of Caustics–CAUSTICS ’02, vol. 62 of Banach Center Publ., Polish Acad. Sci., Warsaw, pp. 183–195 (2004)

  • R. C. Lindenbergh: Limits of Voronoi diagrams, Rijksuniversiteit te Utrecht, Utrecht, 2002. Dissertation, Universiteit Utrecht, Utrecht, 2002

  • MacPherson, R.D., Srolovitz, D.J.: The von Neumann relation generalized to coarsening of three-dimensional microstructures. Nature 446, 1053–1055 (2007)

    Article  Google Scholar 

  • Michor, P.W., Mumford, D.: Vanishing geodesic distance on spaces on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217–245 (2005)

    MATH  MathSciNet  Google Scholar 

  • Mugnai, L., Seis, C.: On the coarsening rates for attachment-limited kinetics. SIAM J. Math. Anal. 45, 324–344 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Mullins, W.W.: Two-dimensional motion of idealized grain boundaries. J. Appl. Phys. 27, 900–904 (1956)

    Article  MathSciNet  Google Scholar 

  • Otto, F., Rump, T., Slepčev, D.: Coarsening rates for a droplet model: rigorous upper bounds. SIAM J. Math. Anal. 38, 503–529 (2006)

    Article  MathSciNet  Google Scholar 

  • Slepčev, D.: Coarsening in nonlocal interfacial systems. SIAM J. Math. Anal. 40, 1029–1048 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • von Neumann, J.: Written discussion. In: Herring, C. (ed.) Metal interfaces, pp. 108–110. American Society for Metals, Cleveland (1952)

  • Wakai, F., Enomoto, N., Ogawa, H.: Three-dimensional microstructural evolution in ideal grain growth—general statistics. Acta Mater. 48, 1297–1311 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

ME was supported in part by a Rackham Predoctoral Fellowship. DS is grateful to NSF (Grant DMS-0908415) and FCT (Grant UTA_CMU/MAT/0007/2009). The research was also supported by NSF PIRE Grant OISE-0967140. The authors are thankful to the Center for Nonlinear Analysis (NSF Grant DMS-0635983) for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejan Slepčev.

Additional information

Communicated by Felix Otto.

Appendix: Derivation of Coordinates for \(v_{ijk}\)

Appendix: Derivation of Coordinates for \(v_{ijk}\)

Equation (10) may be derived as follows: The vertex \(v_{ijk}\) must satisfy

$$\begin{aligned} (x_i-v_{ijk}) \cdot (x_i-v_{ijk}) = (x_j-v_{ijk}) \cdot (x_j-v_{ijk}) = (x_k-v_{ijk}) \cdot (x_k-v_{ijk}), \end{aligned}$$

from which we subtract \(v_{ijk} \cdot v_{ijk}\) to obtain

$$\begin{aligned} x_i \cdot x_i-2x_i \cdot v_{ijk} = x_j \cdot x_j-2x_j \cdot v_{ijk} = x_k \cdot x_k-2x_k \cdot v_{ijk}, \end{aligned}$$

which can be combined to obtain

$$\begin{aligned} 2(x_j-x_i) \cdot v_{ijk} = x_j \cdot x_j-x_i \cdot x_i \end{aligned}$$

and

$$\begin{aligned} 2(x_k-x_j) \cdot v_{ijk} = x_k \cdot x_k-x_j \cdot x_j. \end{aligned}$$

In matrix form, this can be expressed as

$$\begin{aligned} \left( \begin{array}{c} (x_j-x_i)^T \\ (x_k-x_j)^T \end{array} \right) v_{ijk} = \frac{1}{2} \left( \begin{array}{c} x_j \cdot x_j-x_i \cdot x_i \\ x_k \cdot x_k-x_j \cdot x_j \end{array} \right) . \end{aligned}$$
(23)

We compute

$$\begin{aligned} \left( \begin{array}{c} (x_j-x_i)^T \\ (x_k-x_j)^T \end{array} \right) ^{-1} = \frac{\left( \begin{array}{cc} (x_j-x_k)^\perp&(x_j-x_i)^\perp \end{array} \right) }{(x_j-x_i)\cdot (x_k-x_j)^\perp }. \end{aligned}$$
(24)

(10) arises by left-multiplying (23) by (24), observing that \(a \cdot b^\perp = -b \cdot a^\perp \), and collecting like terms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsey, M., Slepčev, D. Mean-Curvature Flow of Voronoi Diagrams. J Nonlinear Sci 25, 59–85 (2015). https://doi.org/10.1007/s00332-014-9221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-014-9221-x

Keywords

Navigation