Skip to main content
Log in

Single-direction diffusion-weighted imaging may be a simple complementary sequence for evaluating fetal corpus callosum

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To explore the feasibility of single-direction diffusion-weighted imaging (DWI) for assessing the fetal corpus callosum (CC).

Methods

This prospective study included 67 fetuses with normal CC and 35 fetuses suspected with agenesis of the corpus callosum (ACC). The MR protocols included HASTE, TrueFISP, and single-direction DWI. Two radiologists independently evaluated the optimal visibility and the contrast ratio (CR) of the normal fetal CC. The Chi-squared test or Fisher’s exact test was used to compare the proportions of “good” visibility (score ≥ 3, and the CC was almost/entirely visible) between single-direction DWI and HASTE/TrueFISP. The CR difference between single-direction DWI and HASTE/TrueFISP was detected using the paired t-test. The diagnostic accuracies were determined by comparison with postnatal imaging. In fetuses suspected of ACC, we measured and compared the length and area of the mid-sagittal CC in the single-direction DWI images.

Results

The proportion of “good” visibility in single-direction DWI was higher than that in HASTE/TrueFISP, with p < 0.0001. The mean CR from single-direction DWI was also higher than that of TrueFISP and HASTE (both with p < 0.0001). The diagnostic accuracy of the single-direction DWI combined with HASTE/TrueFisp (97.1%, 34/35) was higher than that of the Haste/TrueFISP (74.3%, 26/35) (p = 0.013). The length and area of the PACC (p < 0.001, p = 0.001, respectively) and HCC (p < 0.001, p = 0.018, respectively) groups were significantly lower than those of the normal group.

Conclusions

The single-direction DWI is feasible in displaying fetal CC and can be a complementary sequence in diagnosing ACC.

Key Points

• We suggest a simple method for the display of the fetal CC.

• The optimal visibility and contrast ratio from single-direction DWI were higher than those from HASTE and TrueFISP.

• The diagnostic accuracy of the single-direction DWI combined with HASTE/TrueFISP sequences (97.1%, 34/35) was higher than that of the Haste/TrueFISP (74.3%, 26/35).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACC:

Agenesis of the corpus callosum

ADC:

Apparent diffusion coefficient

CACC:

Complete agenesis of the corpus callosum

CC:

Corpus callosum

CI:

Confidence interval

CR:

Contrast ratio

DTI:

Diffusion-tensor magnetic resonance imaging

DWI:

Diffusion-weighted imaging

HASTE:

Half-Fourier single-shot turbo spin-echo

HCC:

Hypoplasia of the corpus callosum

ICC:

Intraclass correlation coefficient

MRI:

Magnetic resonance imaging

PACC:

Partial agenesis of the corpus callosum

ROI:

Region of interest

TrueFISP:

True fast imaging with steady-state precession

References

  1. Huang H, Xue R, Zhang J et al (2009) Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. J Neurosci 29:4263–4273. https://doi.org/10.1523/JNEUROSCI.2769-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang H, Zhang J, Jiang H et al (2005) DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum. Neuroimage 26:195–205. https://doi.org/10.1016/j.neuroimage.2005.01.019

    Article  PubMed  Google Scholar 

  3. Manevich-Mazor M, Weissmann-Brenner A, Bar Yosef O et al (2018) Added value of fetal MRI in the evaluation of fetal anomalies of the corpus callosum: a retrospective analysis of 78 cases. Ultraschall Med 39:513–525. https://doi.org/10.1055/s-0043-113820

  4. Achiron R, Achiron A (2001) Development of the human fetal corpus callosum: a high-resolution, cross-sectional sonographic study: fetal corpus callosum development. Ultrasound Obstet Gynecol 18:343–347. https://doi.org/10.1046/j.0960-7692.2001.00512.x

    Article  CAS  PubMed  Google Scholar 

  5. Cignini P, Padula F, Giorlandino M et al (2014) Reference charts for fetal corpus callosum length: a prospective cross-sectional study of 2950 fetuses. J Ultrasound Med 33:1065–1078. https://doi.org/10.7863/ultra.33.6.1065

    Article  PubMed  Google Scholar 

  6. Horsfield MA, Jones DK (2002) Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases - a review. NMR Biomed 15:570–577. https://doi.org/10.1002/nbm.787

    Article  PubMed  Google Scholar 

  7. Feng L, Li H, Oishi K et al (2019) Age-specific gray and white matter DTI atlas for human brain at 33, 36 and 39 postmenstrual weeks. Neuroimage 185:685–698. https://doi.org/10.1016/j.neuroimage.2018.06.069

    Article  PubMed  Google Scholar 

  8. Vasung L, Charvet CJ, Shiohama T et al (2019) Ex vivo fetal brain MRI: recent advances, challenges, and future directions. Neuroimage 195:23–37. https://doi.org/10.1016/j.neuroimage.2019.03.034

    Article  PubMed  Google Scholar 

  9. Ouyang A, Jeon T, Sunkin SM et al (2015) Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging. Methods 73:27–37. https://doi.org/10.1016/j.ymeth.2014.10.025

    Article  CAS  PubMed  Google Scholar 

  10. Song JW, Gruber GM, Patsch JM et al (2018) How accurate are prenatal tractography results? A postnatal in vivo follow-up study using diffusion tensor imaging. Pediatr Radiol 48:486–498. https://doi.org/10.1007/s00247-017-3982-y

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mitter C, Prayer D, Brugger PC et al (2015) In vivo tractography of fetal association fibers. PLoS One 10:e0119536. https://doi.org/10.1371/journal.pone.0119536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ouyang M, Dubois J, Yu Q et al (2019) Delineation of early brain development from fetuses to infants with diffusion MRI and beyond. Neuroimage 185:836–850. https://doi.org/10.1016/j.neuroimage.2018.04.017

    Article  PubMed  Google Scholar 

  13. Huang H, Vasung L (2014) Gaining insight of fetal brain development with diffusion MRI and histology. Int J Dev Neurosci 32:11–22. https://doi.org/10.1016/j.ijdevneu.2013.06.005

    Article  PubMed  Google Scholar 

  14. Song L, Mishra V, Ouyang M et al (2017) Human fetal brain connectome: structural network development from middle fetal stage to birth. Front Neurosci 11:561. https://doi.org/10.3389/fnins.2017.00561

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huang H (2010) Structure of the fetal brain: what we are learning from diffusion tensor imaging. Neuroscientist 16:634–649. https://doi.org/10.1177/1073858409356711

    Article  PubMed  Google Scholar 

  16. Huang H, Zhang J, Wakana S et al (2006) White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33:27–38. https://doi.org/10.1016/j.neuroimage.2006.06.009

    Article  PubMed  Google Scholar 

  17. Milos R-I (2020) Developmental dynamics of the periventricular parietal crossroads of growing cortical pathways in the fetal brain - in vivo fetal MRI with histological correlation. Nuerolmage 210:116553

    Article  CAS  Google Scholar 

  18. Khan S, Vasung L, Marami B et al (2019) Fetal brain growth portrayed by a spatiotemporal diffusion tensor MRI atlas computed from in utero images. Neuroimage 185:593–608. https://doi.org/10.1016/j.neuroimage.2018.08.030

    Article  PubMed  Google Scholar 

  19. Jakab A, Tuura R, Kellenberger C, Scheer I (2017) In utero diffusion tensor imaging of the fetal brain: a reproducibility study. Neuroimage Clin 15:601–612. https://doi.org/10.1016/j.nicl.2017.06.013

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hunt D, Dighe M, Gatenby C, Studholme C (2020) Automatic, age consistent reconstruction of the corpus callosum guided by coherency from in utero diffusion-weighted MRI. IEEE Trans Med Imaging 39:601–610. https://doi.org/10.1109/TMI.2019.2932681

    Article  PubMed  Google Scholar 

  21. Marami B, Mohseni Salehi SS, Afacan O et al (2017) Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis. Neuroimage 156:475–488. https://doi.org/10.1016/j.neuroimage.2017.04.033

  22. Scola E, Sirgiovanni I, Avignone S et al (2016) Fetal development of the corpus callosum: insights from a 3T DTI and tractography study in a patient with segmental callosal agenesis. Neuroradiol J 29:323–325. https://doi.org/10.1177/1971400916665390

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tagliafico A, Succio G, Neumaier CE et al (2012) Brachial plexus assessment with three-dimensional isotropic resolution fast spin echo MRI: comparison with conventional MRI at 3.0 T. Br J Radiol 85:e110–e116. https://doi.org/10.1259/bjr/28972953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoneyama M, Takahara T, Kwee TC et al (2013) Rapid high resolution MR Neurography with a diffusion-weighted pre-pulse. Magn Reson Med Sci 12:111–119. https://doi.org/10.2463/mrms.2012-0063

    Article  PubMed  Google Scholar 

  25. Ghi T, Carletti A, Contro E et al (2010) Prenatal diagnosis and outcome of partial agenesis and hypoplasia of the corpus callosum. Ultrasound Obstet Gynecol 35:35–41. https://doi.org/10.1002/uog.7489

    Article  CAS  PubMed  Google Scholar 

  26. Takahara T, Hendrikse J, Kwee TC et al (2010) Diffusion-weighted MR neurography of the sacral plexus with unidirectional motion probing gradients. Eur Radiol 20:1221–1226. https://doi.org/10.1007/s00330-009-1665-2

    Article  PubMed  Google Scholar 

  27. Bydder GM, Rutherford MA, Hajnal JV (2001) How to perform diffusion-weighted imaging. Childs Nerv Syst 17:195–201. https://doi.org/10.1007/s003810000281

    Article  CAS  PubMed  Google Scholar 

  28. Liu B, Xin W, Tan J-R et al (2019) Myelin sheath structure and regeneration in peripheral nerve injury repair. Proc Natl Acad Sci 116:22347–22352. https://doi.org/10.1073/pnas.1910292116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bando Y (2019) Roads to formation of normal myelin structure and pathological myelin structure. In: Sango K, Yamauchi J, Ogata T, Susuki K (eds) Myelin. Springer Singapore, Singapore, pp 257–264

    Chapter  Google Scholar 

  30. Jiang S, Xue H, Counsell S et al (2009) Diffusion tensor imaging (DTI) of the brain in moving subjects: application to in-utero fetal and ex-utero studies. Magn Reson Med 62:645–655. https://doi.org/10.1002/mrm.22032

    Article  PubMed  Google Scholar 

  31. Diogo MC, Prayer D, Gruber GM et al (2019) Echo-planar FLAIR sequence improves subplate visualization in fetal MRI of the brain. Radiology 292:159–169. https://doi.org/10.1148/radiol.2019181976

    Article  PubMed  Google Scholar 

  32. Kasprian G, Brugger PC, Schöpf V et al (2013) Assessing prenatal white matter connectivity in commissural agenesis. Brain 136:168–179. https://doi.org/10.1093/brain/aws332

    Article  PubMed  Google Scholar 

  33. Mitter C, Jakab A, Brugger PC et al (2015) Validation of in utero tractography of human fetal commissural and internal capsule fibers with histological structure tensor analysis. Front Neuroanat 9:164. https://doi.org/10.3389/fnana.2015.00164

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kuklisova-Murgasova M, Quaghebeur G, Rutherford MA et al (2012) Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med Image Anal 16:1550–1564. https://doi.org/10.1016/j.media.2012.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kuklisova-Murgasova M, Lockwood Estrin G, Nunes RG et al (2018) Distortion correction in fetal EPI Using non-rigid registration with a Laplacian constraint. IEEE Trans Med Imaging 37:12–19. https://doi.org/10.1109/TMI.2017.2667227

    Article  PubMed  Google Scholar 

  36. Deprez M, Price A, Christiaens D et al (2020) Higher order spherical harmonics reconstruction of fetal diffusion MRI with intensity correction. IEEE Trans Med Imaging 39:1104–1113. https://doi.org/10.1109/TMI.2019.2943565

    Article  PubMed  Google Scholar 

  37. Gholipour A, Rollins CK, Velasco-Annis C et al (2017) A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci Rep 7:476. https://doi.org/10.1038/s41598-017-00525-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Ellen Grant, MD, formally affiliated with the Department of Radiology and Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston Children’s Hospital, Harvard Medical School, for helping me revise the manuscript. We are very grateful to all the participants and their families who consented to participate in this study. Besides, we thank the radiography staff at the Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, for their support in the imaging data collection.

Funding

This work was supported by the National Natural Science Foundation of China (81671668); and the Natural Science Foundation of Shandong Province (ZR201911150560).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangbin Wang.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Guangbin Wang.

Conflict of interest

One of the authors of this manuscript (Jinxia Zhu) is an employee of Siemens Healthcare. The remaining authors declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• prospective

• diagnostic or prognostic study

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 11385 kb)

ESM 2

(DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Zhang, X., Chen, X. et al. Single-direction diffusion-weighted imaging may be a simple complementary sequence for evaluating fetal corpus callosum. Eur Radiol 32, 1135–1143 (2022). https://doi.org/10.1007/s00330-021-08176-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-08176-2

Keywords

Navigation