Demographics
A total of 1086 respondents completed the survey. Forty-five respondents were excluded because they were not part of the target population (e.g., student, industry, researcher, entrepreneur) or were double entries, resulting in a final population of 1041 respondents from 54 countries. A summary of the demographics of all respondents is given in Table 1. In Part 1, a detailed description of demographics stratified per source population (i.e., SIRM, NVvR, SFR, other) is given [1].
Table 1 Baseline characteristics of all respondents (n=1041) Expectations of AI
Term of expected impact
Most respondents thought that AI will help to improve diagnostic radiology (n = 926, 89%), some maybe (n = 108, 10%), and 1% (n = 7) disagreed. Most respondents thought that AI will alter the future of radiologists (n = 880, 85%), and minorities were of opinion maybe (n = 145, 14%) or not at all (n = 16, 2%) (Table 2).
Table 2 Expectations and anticipated hurdles to implementation (n = 1041) The expected term of noticeable effects of AI in radiology was mostly short-term (< 5 years, n = 363, 35%) or middle long-term (5–10 years, n = 492, 49%). A markable change in > 10 years was expected by n = 149 (14%) respondents (Fig. 1).
Independent predictors for expecting change on a short term (< 5 years) were higher age (adjusted OR per 10-year interval 1.26, 95% CI 1.07–1.47, p = 0.005), female gender (adjusted OR 1.37, 95% CI 1.02–1.84, p = 0.04), respondents who only heard of AI (adjusted OR 2.74, 95% CI 1.14–6.57, p = 0.02), and respondents with intermediate (adjusted OR 4.30, 95% CI 1.79–10.26, p = 0.001) or advanced AI-specific knowledge (adjusted OR 5.31, 95% CI 2.13–13.23, p < 0.001) (Table 3). Respondents with an abdominal subspecialty were less likely to expect change on a short term (adjusted OR 0.69, 95% CI 0.51–0.93, p = 0.02).
Table 3 Independent predictors for term of expected impact of AI in diagnostic radiology and anticipated hurdles to its implementation Independent predictors for expecting change on a middle long-term (5–10 years) were male gender (adjusted OR 1.51, 95% CI 1.14–2.00, p = 0.004) and working in Europe (adjusted OR 1.69, 95% CI 1.18–2.42, p = 0.004) rather than outside of Europe.
Negative predictors for expecting change on the long term (> 10 years) were lower age (adjusted OR 0.64 per 10-year interval, 95% CI 0.51–0.82, p < 0.001), working in Europe (adjusted OR 0.54, 95% CI 0.35–0.85, p = 0.008), professional social media use (adjusted OR 0.60, 95% CI 0.41–0.87, p = 0.008), and intermediate (adjusted OR 0.23, 95% CI 0.11–0.52, p < 0.001) or advanced AI-specific knowledge (adjusted OR 0.17, 95% CI 0.07–0.44, p < 0.001). There were no differences for hospital type (i.e., academic, non-academic, and private).
Expected role of AI in diagnostic radiology on the longer term
The question on the expected role(s) of AI in the longer term was filled out by n = 1029/1041 (99%) respondents. Most frequently, the role of AI in the longer term was reported as AI becoming the second reader (n = 829/1029, 78%); respondents with advanced AI-specific knowledge were significantly more likely to indicate this (adjusted OR 3.31, 95% CI 1.42–7.69, p = 0.006) (Tables 2 and 3).
Partial replacement of radiologists by AI was expected by 47% (n = 493/1029) of respondents, and independent predictors were male gender (adjusted OR 1.73, 95% CI 1.30–2.32, p < 0.001), intermediate AI-specific knowledge (adjusted OR 2.41, 95% CI 1.12–5.20, p = 0.03), and advanced AI-specific knowledge (adjusted OR 4.04, 95% CI 1.78–9.16, p = 0.004). Negative predictors for expecting partial replacement were age (adjusted OR per 10-year interval 0.85, 95% CI 0.73–0.99, p = 0.04) and abdominal (adjusted OR 0.65, 95% CI 0.49–0.78, p = 0.004), breast (adjusted OR 0.48, 95% CI 0.30–0.75, p = 0.002), and pediatric (adjusted OR 0.59, 95% CI 0.36–0.98, p = 0.04) subspecialties. Full replacement of radiologists by AI was only expected by n = 31/1029 (3%) respondents.
Workflow optimization by AI was expected by 77% (n = 803/1029) of respondents, and independent predictors were lower age (adjusted OR per 10-year interval 0.77, 95% CI 0.64–0.92, p = 0.004) and intermediate (adjusted OR 3.41, 95% CI 1.64–7.09, p = 0.001) and advanced (adjusted OR 6.46, 95% CI 2.73–15.31, p < 0.001) AI-specific knowledge. Ninety-nine respondents (n = 99/1029, 10%) expected that AI will have no image-based role such as detection of pathology (i.e., these respondents expect only workflow optimization).
Anticipated hurdles to implementation
The question on anticipated hurdles to implementation was filled out by n = 1024/1041 (98%) respondents, and respondents could select multiple answers. Indicated hurdles to clinical implementation of AI were mainly ethical and legal issues (n = 630, 62%), limitations in digital infrastructure (n = 356, 35%), and lack of knowledge (n = 584, 56%) of stakeholders (i.e., clinicians, radiology staff, or management) (Table 2).
High costs of AI software development were indicated by n = 363/1024 (35%), and high costs of AI software itself were indicated by n = 400/1024 (38%); there were no independent predictors for these outcomes (Table 3).
Lack of trust in AI by stakeholders (i.e., clinicians, staff, or management) was reported by n = 376/1024 (37%) of respondents, and independently and significantly more often observed in those working outside of Europe (adjusted OR 1.77, 95% CI 1.24–2.53, p = 0.002) and cardiothoracic radiologists (adjusted OR 1.57, 95% CI 1.11–2.22, p = 0.01).
Lack of knowledge or expertise of stakeholders was reported by n = 584/1024 (57%) and significantly less often observed in respondents working in private centers (adjusted OR 0.63, 95% CI 0.24–0.94, p = 0.02).
Lack of high-quality image data was reported by n = 159/1024 (16%) and significantly less often indicated in respondents working in Europe (adjusted OR 0.39, 95% CI 0.26–0.61, p < 0.001), private centers (adjusted OR 0.49, 95% CI 0.27–0.89, p = 0.02), and breast radiologists (adjusted OR 0.43, 95% CI 0.20–0.90, p = 0.03). This hurdle was more often indicated in respondents with advanced AI-specific knowledge (adjusted OR 3.37, 95% CI 1.05–10.84, p = 0.04) and pediatric radiologists (adjusted OR 2.13, 95% CI 1.20–3.80, p = 0.01).
Lack of high-quality image labels was reported in n = 287/1024 (27%), and significantly more mentioned in those with advanced AI-specific knowledge (adjusted OR 5.42, 95% CI 2.22–13.21, p < 0.001).
Lack of generalizability (i.e., external validity) of the software was reported in n = 410/1024 (40%), and significantly less mentioned in older respondents (adjusted OR per 10-year interval 0.85, 95% CI 0.73–0.99, p = 0.04) and respondents working in Europe (adjusted OR 0.54, 95% CI 0.38–0.77, p < 0.001).
Ethical and legal issues were mentioned by n = 630/1024 (62%), and significantly more often observed in those working outside of Europe (adjusted OR 1.71, 95% CI 1.17–2.48, p = 0.005), those with intermediate (adjusted OR 2.90, 95% CI 1.48–5.65, p = 0.002) or advanced (adjusted OR 2.85, 95% CI 1.39–5.86, p = 0.004) AI-specific knowledge, and musculoskeletal radiologists (adjusted OR 1.44, 95% CI 1.03–2.01, p = 0.03). This hurdle was less often indicated in respondents with basic AI-specific knowledge (adjusted OR 0.68, 95% CI 0.48–0.96, p = 0.03).
Limitations in digital infrastructure of the hospital/center were mentioned in n = 356/1024 (35%) and more often observed in abdominal radiologists (adjusted OR 1.45, 95% CI 1.08–1.95, p = 0.01), cardiothoracic radiologists (adjusted OR 1.51, 95% CI 1.05–2.15, p = 0.03), and interventional radiologists (adjusted OR 1.55, 95% CI 1.09–2.21, p = 0.01). This hurdle was less often indicated in respondents working in non-academic (adjusted OR 0.58, 95% CI 0.42–0.82, p = 0.002) or private (adjusted OR 0.57, 95% CI 0.37–0.87, p = 0.009) centers, compared to those working in academic centers. Resistance to change was mentioned in open answers by n = 7 respondents and lack of radiology-specific knowledge of computer scientists by n = 5 respondents. Anticipated hurdles to implementation by AI-specific knowlegde levels are depicted in Fig. 2.
AI in residency programs
A majority (n = 819, 79%) of the respondents indicated that AI education should be incorporated in residency programs, and the remainder indicated maybe (n = 182, 18%) or disagreed (n = 40, n = 4%). Positive predictors for favoring integration of AI education in residency programs were increasing age (adjusted OR 1.43 per 10-year interval, 95% CI 1.20–1.74, p < 0.001), being a resident (adjusted OR 1.71, 95% CI 1.09–2.68, p = 0.02), only having heard of AI (adjusted OR 2.96, 95% CI 1.48–5.89, p = 0.002), intermediate AI-specific knowledge (adjusted OR 3.84, 95% CI 1.90–7.77, p < 0.001), and advanced AI-specific knowledge (adjusted OR 5.16, 95% CI 2.33–11.43, p < 0.001). Respondents subspecialized in pediatric radiology reported significantly less often they wanted AI education incorporated in residency curricula (adjusted OR 0.58, 95% CI 0.35–0.98, p = 0.04) (Table 4).
Table 4 Opinions and independent predictors for AI and imaging informatics in radiology curricula (n = 1041) A minority indicated that imaging informatics and AI should (n = 241, 23%) or maybe should (n = 359, 35%) become a radiology subspecialty, while some (n = 437, 42%) disagreed. The only positive predictor for favoring imaging informatics and AI as a subspecialty was professional social media use (adjusted OR 1.38, 95% CI 1.01–1.89, p = 0.04).
Preferred self-learning methods regarding AI
Of respondents, n = 780 (75%) responded yes to the question “Are you planning on learning about this topic, even if it’s not a program or CME requirement?”, whereas n = 198 (19%) respondents answered “maybe” to this question. N = 63 (6%) respondents were not planning to learn about AI [1]. Preferred self-learning media were conferences/specialty courses (n = 765, 74%), scientific literature (n = 619, 60%), online articles (e.g., on medium or ai.myesr.org) in n = 498 (48%), e-learning platforms such as Coursera/EdX (n = 448, 43%), and social media including Twitter, LinkedIn, Facebook, and YouTube (n = 254, 24%). In general, we found that those participants with intermediate to advanced level AI-specific knowledge are more motivated to use any medium for self-study, and in particular scientific literature and conferences/specialty courses. Table 5 summarizes independent predictors for each medium.
Table 5 Independent predictors for self-learning methods pertaining to artificial intelligence in radiology