Skip to main content
Log in

Diagnostic test accuracy of ADC values for identification of clear cell renal cell carcinoma: systematic review and meta-analysis

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To perform a systematic review on apparent diffusion coefficient (ADC) values of renal tumor subtypes and meta-analysis on the diagnostic performance of ADC for differentiation of localized clear cell renal cell carcinoma (ccRCC) from other renal tumor types.

Methods

Medline, Embase, and the Cochrane Library databases were searched for studies published until May 1, 2019, that reported ADC values of renal tumors. Methodological quality was evaluated. For the meta-analysis on diagnostic test accuracy of ADC for differentiation of ccRCC from other renal lesions, we applied a bivariate random-effects model and compared two subgroups of ADC measurement with vs. without cystic and necrotic areas.

Results

We included 48 studies (2588 lesions) in the systematic review and 13 studies (1126 lesions) in the meta-analysis. There was no significant difference in ADC of renal parenchyma using b values of 0–800 vs. 0–1000 (p = 0.08). ADC measured on selected portions (sADC) excluding cystic and necrotic areas differed significantly from whole-lesion ADC (wADC) (p = 0.002). Compared to ccRCC, minimal-fat angiomyolipoma, papillary RCC, and chromophobe RCC showed significantly lower sADC while oncocytoma exhibited higher sADC. Summary estimates of sensitivity and specificity to differentiate ccRCC from other tumors were 80% (95% CI, 0.76–0.88) and 78% (95% CI, 0.64–0.89), respectively, for sADC and 77% (95% CI, 0.59–0.90) and 77% (95% CI, 0.69–0.86) for wADC. sADC offered a higher area under the receiver operating characteristic curve than wADC (0.852 vs. 0.785, p = 0.02).

Conclusions

ADC values of kidney tumors that exclude cystic or necrotic areas more accurately differentiate ccRCC from other renal tumor types than whole-lesion ADC values.

Key Points

• Selective ADC of renal tumors, excluding cystic and necrotic areas, provides better discriminatory ability than whole-lesion ADC to differentiate clear cell RCC from other renal lesions, with area under the receiver operating characteristic curve (AUC) of 0.852 vs. 0.785, respectively (p = 0.02).

• Selective ADC of renal masses provides moderate sensitivity and specificity of 80% and 78%, respectively, for differentiation of clear cell renal cell carcinoma (RCC) from papillary RCC, chromophobe RCC, oncocytoma, and minimal-fat angiomyolipoma.

• Selective ADC excluding cystic and necrotic areas are preferable to whole-lesion ADC as an additional tool to multiphasic MRI to differentiate clear cell RCC from other renal lesions whether the highest b value is 800 or 1000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

ANOVA:

Analysis of variance

AUC:

Area under the receiver operating characteristic curve

ccRCC:

Clear cell renal cell carcinoma

chRCC:

Chromophobe renal cell carcinoma

DWI:

Diffusion weighted imaging

MeSH:

Medical subject heading

mfAML:

Minimal-fat angiomyolipoma

pRCC:

Papillary renal cell carcinoma

RCC:

Renal cell carcinoma

ROI:

Regions of interests

sADC:

ADC of selected region of the tumor (excluding cystic, hemorrhagic, and necrotic areas)

wADC:

ADC of the whole lesion

References

  1. Wang H, Cheng L, Zhang X et al (2010) Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology 257:135–143. https://doi.org/10.1148/radiol.10092396

    Article  PubMed  Google Scholar 

  2. Paudyal B, Paudyal P, Tsushima Y et al (2010) The role of the ADC value in the characterisation of renal carcinoma by diffusion-weighted MRI. Br J Radiol 83:336–343. https://doi.org/10.1259/bjr/74949757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li H, Liu L, Ding L, Zhang Z, Zhang M (2018) Quantitative assessment of bladder cancer reflects grade and recurrence: comparing of three methods of positioning region of interest for ADC measurements at diffusion-weighted MR imaging. Acad Radiol. https://doi.org/10.1016/j.acra.2018.10.016

  4. Paschall AK, Mirmomen SM, Symons R et al (2018) Differentiating papillary type I RCC from clear cell RCC and oncocytoma: application of whole-lesion volumetric ADC measurement. Abdom Radiol (NY) 43:2424–2430. https://doi.org/10.1007/s00261-017-1453-4

    Article  Google Scholar 

  5. Choi YA, Kim CK, Park SY, Cho SW, Park BK (2014) Subtype differentiation of renal cell carcinoma using diffusion-weighted and blood oxygenation level-dependent MRI. AJR Am J Roentgenol 203:W78–W84. https://doi.org/10.2214/AJR.13.11551

  6. Hassanen O, Ghieda U, Eltomey MA (2017) Contrast enhanced MRI and diffusion weighted imaging (DWI) in the evaluation of renal cell carcinoma and differentiation of its subtypes. Egypt J Radiol Nucl Med 48:1117–1123. https://doi.org/10.1016/j.ejrnm.2017.03.024

    Article  Google Scholar 

  7. Ponhold L, Javor D, Heinz-Peer G, Sevcenco S, Hofstetter M, Baltzer PA (2016) Inter-observer variation and diagnostic efficacy of apparent diffusion coefficient (ADC) measurements obtained by diffusion-weighted imaging (DWI) in small renal masses. Acta Radiol 57:1014–1020. https://doi.org/10.1177/0284185115610934

  8. Mytsyk Y, Borys Y, Komnatska I, Dutka I, Shatynska-Mytsyk I (2014) Value of the diffusion-weighted MRI in the differential diagnostics of malignant and benign kidney neoplasms - our clinical experience. Pol J Radiol 79:290–295. https://doi.org/10.12659/PJR.890604

  9. Cheville JC, Lohse CM, Zincke H, Weaver AL, Blute ML (2003) Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol 27:612–624

  10. Libertino JA (2013) Renal cancer: contemporary management. Springer Science & Business Media

  11. Jonasch E, Gao J, Rathmell WK (2014) Renal cell carcinoma. BMJ 349. https://doi.org/10.1136/bmj.g4797

  12. Zhang J, Lefkowitz RA, Bach A (2007) Imaging of kidney cancer. Radiol Clin North Am 45:119–147. https://doi.org/10.1016/j.rcl.2006.10.011

    Article  PubMed  Google Scholar 

  13. Parada Villavicencio C, Mc Carthy RJ, Miller FH (2017) Can diffusion-weighted magnetic resonance imaging of clear cell renal carcinoma predict low from high nuclear grade tumors. Abdom Radiol (NY) 42:1241–1249. https://doi.org/10.1007/s00261-016-0981-7

    Article  Google Scholar 

  14. Lassel EA, Rao R, Schwenke C, Schoenberg SO, Michaely HJ (2014) Diffusion-weighted imaging of focal renal lesions: a meta-analysis. Eur Radiol 24:241–249. https://doi.org/10.1007/s00330-013-3004-x

  15. Li Y, Wang Y, Qin J, Wu J, Dai X, Xu J (2018) Meta-analysis of diffusion-weighted imaging in the differential diagnosis of renal lesions. Clin Imaging 52:264–272. https://doi.org/10.1016/j.clinimag.2018.08.010

  16. Kang SK, Zhang A, Pandharipande PV, Chandarana H, Braithwaite RS, Littenberg B (2015) DWI for renal mass characterization: systematic review and meta-analysis of diagnostic test performance. AJR Am J Roentgenol 205:317–324. https://doi.org/10.2214/AJR.14.13930

  17. Woo S, Suh CH, Kim SY, Cho JY, Kim SH (2017) Diagnostic performance of DWI for differentiating high- from low-grade clear cell renal cell carcinoma: a systematic review and meta-analysis. AJR Am J Roentgenol 209:W374–W381. https://doi.org/10.2214/AJR.17.18283

  18. Chiarello MA, Mali RD, Kang SK (2018) Diagnostic accuracy of MRI for detection of papillary renal cell carcinoma: a systematic review and meta-analysis. AJR Am J Roentgenol 211:812–821. https://doi.org/10.2214/AJR.17.19462

    Article  PubMed  PubMed Central  Google Scholar 

  19. McInnes MDF, Moher D, Thombs BD et al (2018) Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA 319:388–396. https://doi.org/10.1001/jama.2017.19163

    Article  PubMed  Google Scholar 

  20. Higgins JPT, Green S (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. The Cochrane Collaboration. Available from http://handbook.cochrane.org

  21. McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C (2016) PRESS Peer review of electronic search strategies: 2015 guideline statement. J Clin Epidemiol 75:40–46. https://doi.org/10.1016/j.jclinepi.2016.01.021

  22. Whiting PF, Rutjes AWS, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009

    Article  PubMed  Google Scholar 

  23. Fisher RA (1919) XV.—The correlation between relatives on the supposition of Mendelian inheritance. Earth Environ Sci Trans R Soc Edinb 52:399–433. https://doi.org/10.1017/S0080456800012163

    Article  Google Scholar 

  24. Student (1908) The probable error of a mean. Biometrika 6:1–25. https://doi.org/10.2307/2331554

    Article  Google Scholar 

  25. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH(2005) Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 58:982–990. https://doi.org/10.1016/j.jclinepi.2005.02.022

  26. Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  27. Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893. https://doi.org/10.1016/j.jclinepi.2005.01.016

    Article  PubMed  Google Scholar 

  28. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. https://doi.org/10.1126/science.3287615

    Article  CAS  PubMed  Google Scholar 

  29. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36. https://doi.org/10.1148/radiology.143.1.7063747

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y-L, Yu B-L, Ren J et al (2013) EADC values in diagnosis of renal lesions by 3.0 T diffusion-weighted magnetic resonance imaging: compared with the ADC values. Appl Magn Reson 44:349–363. https://doi.org/10.1007/s00723-012-0376-z

    Article  CAS  PubMed  Google Scholar 

  31. Goyal A, Sharma R, Bhalla AS et al (2012) Diffusion-weighted MRI in renal cell carcinoma: a surrogate marker for predicting nuclear grade and histological subtype. Acta Radiol 53:349–358. https://doi.org/10.1258/ar.2011.110415

    Article  PubMed  Google Scholar 

  32. Manenti G, Di Roma M, Mancino S et al (2008) Malignant renal neoplasms: correlation between ADC values and cellularity in diffusion weighted magnetic resonance imaging at 3 T. Radiol Med 113:199–213. https://doi.org/10.1007/s11547-008-0246-9

    Article  CAS  PubMed  Google Scholar 

  33. Squillaci E, Manenti G, Cova M et al (2004) Correlation of diffusion-weighted MR imaging with cellularity of renal tumours. Anticancer Res 24:4175–4179

    PubMed  Google Scholar 

  34. Zhang H-M, Wu Y-H, Gan Q et al (2015) Diagnostic utility of diffusion-weighted magnetic resonance imaging in differentiating small solid renal tumors (≤ 4 cm) at 3.0T magnetic resonance imaging. Chin Med J (Engl) 128:1444–1449. https://doi.org/10.4103/0366-6999.157648

    Article  Google Scholar 

  35. Doğanay S, Kocakoç E, Ciçekçi M, Ağlamişb S, Akpolatd N, Orhan I (2011) Ability and utility of diffusion-weighted MRI with different b values in the evaluation of benign and malignant renal lesions. Clin Radiol 66:420–425. https://doi.org/10.1016/j.crad.2010.11.013

  36. Yano M, Fowler KJ, Srisuwan S, Salter A, Siegel CL (2018) Quantitative multiparametric MR analysis of small renal lesions: correlation with surgical pathology. Abdom Radiol (NY) 43:3390–3399. https://doi.org/10.1007/s00261-018-1612-2

  37. Mytsyk Y, Dutka I, Yuriy B et al (2018) Differential diagnosis of the small renal masses: role of the apparent diffusion coefficient of the diffusion-weighted MRI. Int Urol Nephrol 50:197–204. https://doi.org/10.1007/s11255-017-1761-1

    Article  PubMed  Google Scholar 

  38. Zhong Y, Wang H, Shen Y et al (2017) Diffusion-weighted imaging versus contrast-enhanced MR imaging for the differentiation of renal oncocytomas and chromophobe renal cell carcinomas. Eur Radiol 27:4913–4922. https://doi.org/10.1007/s00330-017-4906-9

    Article  PubMed  Google Scholar 

  39. Galmiche C, Bernhard J-C, Yacoub M, Ravaud A, Grenier N, Cornelis F (2017) Is multiparametric MRI useful for differentiating oncocytomas from chromophobe renal cell carcinomas? AJR Am J Roentgenol 208:343–350. https://doi.org/10.2214/AJR.16.16832

  40. Mirka H, Korcakova E, Kastner J et al (2015) Diffusion-weighted imaging using 3.0 T MRI as a possible biomarker of renal tumors. Anticancer Res 35:2351–2357

    PubMed  Google Scholar 

  41. Rheinheimer S, Stieltjes B, Schneider F et al (2012) Investigation of renal lesions by diffusion-weighted magnetic resonance imaging applying intravoxel incoherent motion-derived parameters--initial experience. Eur J Radiol 81:e310–e316. https://doi.org/10.1016/j.ejrad.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  42. Taouli B, Thakur RK, Mannelli L et al (2009) Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology 251:398–407. https://doi.org/10.1148/radiol.2512080880

    Article  PubMed  Google Scholar 

  43. Sevcenco S, Heinz-Peer G, Ponhold L et al (2014) Utility and limitations of 3-tesla diffusion-weighted magnetic resonance imaging for differentiation of renal tumors. Eur J Radiol 83:909–913. https://doi.org/10.1016/j.ejrad.2014.02.026

    Article  CAS  PubMed  Google Scholar 

  44. Inci E, Hocaoglu E, Aydin S, Cimilli T (2012) Diffusion-weighted magnetic resonance imaging in evaluation of primary solid and cystic renal masses using the Bosniak classification. Eur J Radiol 81:815–820. https://doi.org/10.1016/j.ejrad.2011.02.024

    Article  PubMed  Google Scholar 

  45. Kilickesmez O, Inci E, Atilla S et al (2009) Diffusion-weighted imaging of the renal and adrenal lesions. J Comput Assist Tomogr 33:828–833. https://doi.org/10.1097/RCT.0b013e31819f1b83

    Article  PubMed  Google Scholar 

  46. Moran K, Abreu-Gomez J, Krishna S et al (2019) Can MRI be used to diagnose histologic grade in T1a (< 4 cm) clear cell renal cell carcinomas? Abdom Radiol (NY). https://doi.org/10.1007/s00261-019-02018-y

  47. Aslan A, İnan İ, Aktan A et al (2018) The utility of ADC measurement techniques for differentiation of low- and high-grade clear cell RCC. Pol J Radiol 83:e446–e451. https://doi.org/10.5114/pjr.2018.80207

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang H, Pan J, Shen Y et al (2019) High signal renal tumors on DWI: the diagnostic value of morphological characteristics. Abdom Radiol (NY) 44:239–246. https://doi.org/10.1007/s00261-018-1728-4

    Article  CAS  Google Scholar 

  49. Li H, Li A, Zhu H et al (2019) Whole-tumor quantitative apparent diffusion coefficient histogram and texture analysis to differentiation of minimal fat angiomyolipoma from clear cell renal cell carcinoma. Acad Radiol 26:632–639. https://doi.org/10.1016/j.acra.2018.06.015

    Article  PubMed  Google Scholar 

  50. Li A, Xing W, Li H et al (2018) Subtype differentiation of small (≤ 4 cm) solid renal mass using volumetric histogram analysis of DWI at 3-T MRI. AJR Am J Roentgenol 211:614–623. https://doi.org/10.2214/AJR.17.19278

    Article  PubMed  Google Scholar 

  51. Shen L, Zhou L, Liu X, Yang X (2017) Comparison of biexponential and monoexponential DWI in evaluation of Fuhrman grading of clear cell renal cell carcinoma. Diagn Interv Radiol 23:100–105. https://doi.org/10.5152/dir.2016.15519

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ding Y, Zeng M, Rao S et al (2016) Comparison of biexponential and monoexponential model of diffusion-weighted imaging for distinguishing between common renal cell carcinoma and fat poor angiomyolipoma. Korean J Radiol 17:853–863. https://doi.org/10.3348/kjr.2016.17.6.853

    Article  PubMed  PubMed Central  Google Scholar 

  53. Park JJ, Kim CK (2017) Small (< 4 cm) renal tumors with predominantly low signal intensity on T2-weighted images: differentiation of minimal-fat angiomyolipoma from renal cell carcinoma. AJR Am J Roentgenol 208:124–130. https://doi.org/10.2214/AJR.16.16102

    Article  PubMed  Google Scholar 

  54. Yamamoto A, Tamada T, Ito K et al (2017) Differentiation of subtypes of renal cell carcinoma: dynamic contrast-enhanced magnetic resonance imaging versus diffusion-weighted magnetic resonance imaging. Clin Imaging 41:53–58. https://doi.org/10.1016/j.clinimag.2016.10.001

    Article  PubMed  Google Scholar 

  55. Feng Q, Ma Z, Zhang S, Wu J (2016) Usefulness of diffusion tensor imaging for the differentiation between low-fat angiomyolipoma and clear cell carcinoma of the kidney. Springerplus 5:12. https://doi.org/10.1186/s40064-015-1627-x

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yuan Q, Kapur P, Zhang Y et al (2016) Intratumor heterogeneity of perfusion and diffusion in clear cell renal cell carcinoma: correlation with tumor cellularity. Clin Genitourin Cancer 14:e585–e594. https://doi.org/10.1016/j.clgc.2016.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhang Y-D, Wu C-J, Wang Q et al (2015) Comparison of utility of histogram apparent diffusion coefficient and R2* for differentiation of low-grade from high-grade clear cell renal cell carcinoma. AJR Am J Roentgenol 205:W193–W201. https://doi.org/10.2214/AJR.14.13802

    Article  PubMed  Google Scholar 

  58. Kierans AS, Rusinek H, Lee A et al (2014) Textural differences in apparent diffusion coefficient between low- and high-stage clear cell renal cell carcinoma. AJR Am J Roentgenol 203:W637–W644. https://doi.org/10.2214/AJR.14.12570

    Article  PubMed  Google Scholar 

  59. Sasamori H, Saiki M, Suyama J, Ohgiya Y, Hirose M, Gokan T (2014) Utility of apparent diffusion coefficients in the evaluation of solid renal tumors at 3T. Magn Reson Med Sci 13:89–95

  60. Cornelis F, Tricaud E, Lasserre AS et al (2014) Routinely performed multiparametric magnetic resonance imaging helps to differentiate common subtypes of renal tumours. Eur Radiol 24:1068–1080. https://doi.org/10.1007/s00330-014-3107-z

    Article  CAS  PubMed  Google Scholar 

  61. Maruyama M, Yoshizako T, Uchida K et al (2015) Comparison of utility of tumor size and apparent diffusion coefficient for differentiation of low- and high-grade clear-cell renal cell carcinoma. Acta Radiol 56:250–256. https://doi.org/10.1177/0284185114523268

    Article  PubMed  Google Scholar 

  62. Notohamiprodjo M, Staehler M, Steiner N et al (2013) Combined diffusion-weighted, blood oxygen level–dependent, and dynamic contrast-enhanced MRI for characterization and differentiation of renal cell carcinoma. Acad Radiol 20:685–693. https://doi.org/10.1016/j.acra.2013.01.015

    Article  PubMed  Google Scholar 

  63. Yu X, Lin M, Ouyang H, Zhou C, Zhang H (2012) Application of ADC measurement in characterization of renal cell carcinomas with different pathological types and grades by 3.0T diffusion-weighted MRI. Eur J Radiol 81:3061–3066. https://doi.org/10.1016/j.ejrad.2012.04.028

  64. Tanaka H, Yoshida S, Fujii Y et al (2011) Diffusion-weighted magnetic resonance imaging in the differentiation of angiomyolipoma with minimal fat from clear cell renal cell carcinoma. Int J Urol 18:727–730. https://doi.org/10.1111/j.1442-2042.2011.02824.x

    Article  PubMed  Google Scholar 

  65. Razek AAKA, Farouk A, Mousa A, Nabil N (2011) Role of diffusion-weighted magnetic resonance imaging in characterization of renal tumors. J Comput Assist Tomogr 35:332–336. https://doi.org/10.1097/RCT.0b013e318219fe76

    Article  PubMed  Google Scholar 

  66. Chandarana H, Kang SK, Wong S et al (2012) Diffusion-weighted intravoxel incoherent motion imaging of renal tumors with histopathologic correlation. Invest Radiol 47:688–696. https://doi.org/10.1097/RLI.0b013e31826a0a49

    Article  PubMed  Google Scholar 

  67. Rosenkrantz AB, Niver BE, Fitzgerald EF Babb JS, Chandarana H, Melamed J (2010) Utility of the apparent diffusion coefficient for distinguishing clear cell renal cell carcinoma of low and high nuclear grade. AJR Am J Roentgenol 195:W344–W351. https://doi.org/10.2214/AJR.10.4688

  68. Sandrasegaran K, Sundaram CP, Ramaswamy R et al (2010) Usefulness of diffusion-weighted imaging in the evaluation of renal masses. AJR Am J Roentgenol 194:438–445. https://doi.org/10.2214/AJR.09.3024

    Article  PubMed  Google Scholar 

  69. Zhang J, Tehrani YM, Wang L et al (2008) Renal masses: characterization with diffusion-weighted MR imaging--a preliminary experience. Radiology 247:458–464. https://doi.org/10.1148/radiol.2472070823

    Article  PubMed  Google Scholar 

  70. Doshi AM, Ream JM, Kierans AS, Ishill NM, Schwartz LH, Hricak H (2016) Use of MRI in differentiation of papillary renal cell carcinoma subtypes: qualitative and quantitative analysis. AJR Am J Roentgenol 206:566–572. https://doi.org/10.2214/AJR.15.15004

  71. Le Bihan D (2013) Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology 268:318–322. https://doi.org/10.1148/radiol.13130420

    Article  PubMed  Google Scholar 

  72. Tourell MC, Shokoohmand A, Landgraf M et al (2017) The distribution of the apparent diffusion coefficient as an indicator of the response to chemotherapeutics in ovarian tumour xenografts. Sci Rep 7:42905. https://doi.org/10.1038/srep42905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jafar MM, Parsai A, Miquel ME (2016) Diffusion-weighted magnetic resonance imaging in cancer: reported apparent diffusion coefficients, in-vitro and in-vivo reproducibility. World J Radiol 8:21–49. https://doi.org/10.4329/wjr.v8.i1.21

    Article  PubMed  PubMed Central  Google Scholar 

  74. Donati OF, Chong D, Nanz D et al (2013) Diffusion-weighted MR imaging of upper abdominal organs: field strength and intervendor variability of apparent diffusion coefficients. Radiology 270:454–463. https://doi.org/10.1148/radiol.13130819

    Article  PubMed  Google Scholar 

  75. Schmeel FC (2019) Variability in quantitative diffusion-weighted MR imaging (DWI) across different scanners and imaging sites: is there a potential consensus that can help reducing the limits of expected bias? Eur Radiol 29:2243–2245. https://doi.org/10.1007/s00330-018-5866-4

    Article  PubMed  Google Scholar 

  76. Winfield JM, Collins DJ, Priest AN et al (2016) A framework for optimization of diffusion-weighted MRI protocols for large field-of-view abdominal-pelvic imaging in multicenter studies. Med Phys 43:95–110. https://doi.org/10.1118/1.4937789

    Article  PubMed  Google Scholar 

  77. Bilgili MYK (2012) Reproductibility of apparent diffusion coefficients measurements in diffusion-weighted MRI of the abdomen with different b values. Eur J Radiol 81:2066–2068. https://doi.org/10.1016/j.ejrad.2011.06.045

    Article  PubMed  Google Scholar 

  78. Kim BR, Song JS, Choi EJ, Hwang SB, Hwang HP (2018) Diffusion-weighted imaging of upper abdominal organs acquired with multiple B-value combinations: value of normalization using spleen as the reference organ. Korean J Radiol 19:389–396. https://doi.org/10.3348/kjr.2018.19.3.389

  79. Eble JN, Weltgesundheitsorganisation, International Agency for Research on Cancer (2006) Pathology and genetics of tumours of the urinary system and male genital organs: editorial and consensus conference in Lyon, France, December 14–18, 2002, Reprint. IARC Press, Lyon

  80. Jiang H-M, Wei J-H, Zhang Z-L et al (2016) Does chromophobe renal cell carcinoma have better survival than clear cell renal cell carcinoma? A clinical-based cohort study and meta-analysis. Int Urol Nephrol 48:191–199. https://doi.org/10.1007/s11255-015-1161-3

    Article  CAS  PubMed  Google Scholar 

  81. Wagener N, Edelmann D, Benner A et al (2017) Outcome of papillary versus clear cell renal cell carcinoma varies significantly in non-metastatic disease. PLoS One 12:e0184173. https://doi.org/10.1371/journal.pone.0184173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zimpfer A, Glass Ä, Zettl H Maruschke M, Hakenberg OW, Erbersdobler A (2019) Histopathologische Diagnose und Prognose des Nierenzellkarzinoms im Kontext der WHO-Klassifikation 2016. Urologe A. https://doi.org/10.1007/s00120-019-0952-z

  83. Capitanio U, Bensalah K, Bex A et al (2019) Epidemiology of renal cell carcinoma. Eur Urol 75:74–84. https://doi.org/10.1016/j.eururo.2018.08.036

    Article  PubMed  Google Scholar 

  84. Keegan KA, Schupp CW, Chamie K, Hellenthal NJ, Evans CP, Koppie TM (2012) Histopathology of surgically treated renal cell carcinoma: survival differences by subtype and stage. J Urol 188:391–397. https://doi.org/10.1016/j.juro.2012.04.006

  85. Leibovich BC, Lohse CM, Crispen PL et al (2010) Histological subtype is an independent predictor of outcome for patients with renal cell carcinoma. J Urol 183:1309–1315. https://doi.org/10.1016/j.juro.2009.12.035

    Article  PubMed  Google Scholar 

  86. Daugherty M, Sedaghatpour D, Shapiro O, Vourganti S, Kutikov A, Bratslavsky G (2017) The metastatic potential of renal tumors: influence of histologic subtypes on definition of small renal masses, risk stratification, and future active surveillance protocols. Urol Oncol 35:153.e15–153.e20. https://doi.org/10.1016/j.urolonc.2016.11.009

  87. Kang SK, Chandarana H (2012) Contemporary imaging of the renal mass. Urol Clin North Am 39:161–170, vi. https://doi.org/10.1016/j.ucl.2012.01.002

    Article  PubMed  Google Scholar 

  88. Hötker AM, Mazaheri Y, Wibmer A et al (2017) Differentiation of clear cell renal cell carcinoma from other renal cortical tumors by use of a quantitative multiparametric MRI approach. AJR Am J Roentgenol 208:W85–W91. https://doi.org/10.2214/AJR.16.16652

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wang H-Y, Su Z-H, Xu X et al (2017) Dynamic contrast-enhanced MRI in renal tumors: common subtype differentiation using pharmacokinetics. Sci Rep 7:3117. https://doi.org/10.1038/s41598-017-03376-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Abrahams NA, Tamboli P (2005) Oncocytic renal neoplasms: diagnostic considerations. Clin Lab Med 25:317–339. https://doi.org/10.1016/j.cll.2005.01.006

    Article  PubMed  Google Scholar 

  91. Ng KL, Morais C, Bernard A et al (2016) A systematic review and meta-analysis of immunohistochemical biomarkers that differentiate chromophobe renal cell carcinoma from renal oncocytoma. J Clin Pathol 69:661–671. https://doi.org/10.1136/jclinpath-2015-203585

    Article  CAS  PubMed  Google Scholar 

  92. Krishnan B, Truong LD (2002) Renal epithelial neoplasms: the diagnostic implications of electron microscopic study in 55 cases. Hum Pathol 33:68–79. https://doi.org/10.1053/hupa.2002.30210

    Article  PubMed  Google Scholar 

  93. Perez-Ordonez B, Hamed G, Campbell S et al (1997) Renal oncocytoma: a clinicopathologic study of 70 cases. Am J Surg Pathol 21:871–883

    Article  CAS  PubMed  Google Scholar 

  94. Patel HD, Druskin SC, Rowe SP, Pierorazio PM, Gorin MA, Allaf ME (2017) Surgical histopathology for suspected oncocytoma on renal mass biopsy: a systematic review and meta-analysis. BJU Int 119:661–666. https://doi.org/10.1111/bju.13763

  95. Vargas HA, Chaim J, Lefkowitz RA et al (2012) Renal cortical tumors: use of multiphasic contrast-enhanced MR imaging to differentiate benign and malignant histologic subtypes. Radiology 264:779–788. https://doi.org/10.1148/radiol.12110746

    Article  PubMed  Google Scholar 

  96. Young JR, Coy H, Kim HJ et al (2017) Performance of relative enhancement on multiphasic MRI for the differentiation of clear cell renal cell carcinoma (RCC) from papillary and chromophobe RCC subtypes and oncocytoma. AJR Am J Roentgenol 208:812–819. https://doi.org/10.2214/AJR.16.17152

    Article  PubMed  Google Scholar 

  97. Canvasser NE, Kay FU, Xi Y et al (2017) Diagnostic accuracy of multiparametric magnetic resonance imaging to identify clear cell renal cell carcinoma in cT1a renal masses. J Urol 198:780–786. https://doi.org/10.1016/j.juro.2017.04.089

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Mirka, Dr. Mytsyk, and Dr. Cornelis for their help.

Funding

This study has received funding from Agence Regionale de Santé (ARS Ile de France; Mickael Tordjman). Dr. Kang is supported by Award Number K07CA197134 from the National Cancer Institute (P.I. Stella Kang, MD, MSc). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickael Tordjman.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Stella Kang.

Conflict of interest

The authors declare that they have no competing interests.

Statistics and biometry

Rahul Mali and Stella Kang kindly provided statistical advice for this manuscript. Two of the authors (R.M. and S.K.) have significant statistical expertise.

Informed consent

Written informed consent was not required for this study because it was a meta-analysis.

Ethical approval

Institutional Review Board approval was not required because it was a systematic review and meta-analysis.

Study subjects or cohorts overlap

This study is a systematic review and meta-analysis.

Methodology

• Multicenter study

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tordjman, M., Mali, R., Madelin, G. et al. Diagnostic test accuracy of ADC values for identification of clear cell renal cell carcinoma: systematic review and meta-analysis. Eur Radiol 30, 4023–4038 (2020). https://doi.org/10.1007/s00330-020-06740-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-020-06740-w

Keywords

Navigation