Skip to main content

Advertisement

Log in

High signal renal tumors on DWI: the diagnostic value of morphological characteristics

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To assess the usefulness of morphological characteristics of diffusion-weighted imaging (DWI) for differentiating malignant renal tumors from benign renal tumors, and clear cell renal cell carcinoma (RCC) from non-clear cell RCC at 3.0 T.

Methods

The study included 249 patients with 251 histopathologically confirmed renal tumors that showed high signal on DWI. For each tumor, two radiologists independently evaluated apparent diffusion coefficient (ADC) values and morphological characteristics of DWI. The differences in the quantitative and qualitative magnetic resonance imaging (MRI) features determined by the readers were assessed. The ADC values between malignant and benign renal tumors and between clear cell and non-clear cell RCC were compared using Mann–Whitney tests. The proportional differences of morphological characteristics of DWI between malignant and benign renal tumors and between clear cell and non-clear cell RCC were compared using Chi-square tests.

Results

There were no significant differences in the quantitative and qualitative MRI features determined by the readers. The ADC values for malignant renal tumors were statistically significantly higher than those for benign renal tumors (p < 0.05), and the ADC values for clear cell RCC were statistically significantly higher than those for non-clear cell RCC (p < 0.05). The proportion of morphological characteristics of DWI between malignant and benign renal tumors was statistically significantly different at ring, nodular, flaky high signal. The proportion of morphological characteristics of DWI between clear cell and non-clear cell RCC was statistically significantly different at uniform high signal.

Conclusions

The morphological characteristics of DWI are useful in differentiating renal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sun M, Thuret R, Abdollah F, et al. (2011) Age-adjusted incidence, mortality, and survival rates of stage-specific renal cell carcinoma in North America: a trend analysis. Eur Urol 59(1):135–141. https://doi.org/10.1016/j.eururo.2010.10.029

    Article  PubMed  Google Scholar 

  2. Hollingsworth JM, Miller DC, Daignault S, et al. (2006) Rising incidence of small renal masses:a need to reassess treatment effect. J Natl Cancer Inst 98(18):1331–1334. https://doi.org/10.1093/jnci/djj362

    Article  PubMed  Google Scholar 

  3. Cornelis F, Tricaud E, Lasserre AS, et al. (2014) Routinely performed multiparametric magnetic resonance imaging helps to differentiate common subtypes of renal tumours. Eur Radiol 24(5):1068–1080. https://doi.org/10.1007/s00330-014-3107-z

    Article  CAS  PubMed  Google Scholar 

  4. Beck SD, Patel MI, Snyder ME, et al. (2004) Effect of papillary and chromophobe cell type on disease-free survival after nephrectomy for renal cell carcinoma. Ann Surg Oncol 11(1):71–77

    Article  Google Scholar 

  5. Leibovich BC, Lohse CM, Crispen PL, et al. (2010) Histological subtype is an independent predictor of outcome for patients with renal cell carcinoma. J Urol 183(4):1309–1315. https://doi.org/10.1016/j.juro.2009.12.035

    Article  PubMed  Google Scholar 

  6. Zhang J, Tehrani YM, Wang L, et al. (2008) Renal masses: characterization with diffusion-weighted MR imaging-a preliminary experience. Radiology 247(2):458–464. https://doi.org/10.1148/radiol.2472070823

    Article  PubMed  Google Scholar 

  7. Taouli B, Thakur RK, Mannelli L, et al. (2009) Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology 251(2):398–407. https://doi.org/10.1148/radiol.2512080880

    Article  PubMed  Google Scholar 

  8. Ginat DT, Mangla R, Yeaney G, et al. (2012) Diffusion-weighted imaging for differentiating benign from malignant skull lesions and correlation with cell density. AJR Am J Roentgenol 198(6):W597–W601. https://doi.org/10.2214/AJR.11.7424

    Article  PubMed  Google Scholar 

  9. Kim S, Jain M, Harris AB, et al. (2009) T1 hyperintense renal lesions: characterization with diffusion-weighted MR imaging versus contrast-enhanced MR imaging. Radiology 251(3):796–807. https://doi.org/10.1148/radiol.2513080724

    Article  PubMed  Google Scholar 

  10. Sandrasegaran K, Sundaram CP, Ramaswamy R, et al. (2010) Usefulness of diffusion-weighted imaging in the evaluation of renal masses. AJR Am J Roentqenol 194(2):438–445. https://doi.org/10.2214/AJR.09.3024

    Article  Google Scholar 

  11. Wang H, Cheng L, Zhang X, et al. (2010) Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology 257(1):135–143. https://doi.org/10.1148/radiol.10092396

    Article  PubMed  Google Scholar 

  12. Yu X, Lin M, Ouyang H, et al. (2012) Application of ADC measurement in a characterization of renal cell carcinomas with different pathological types and grades by 3.0T diffusion weighted MRI. Eur J Radiol 81(11):3061–3066. https://doi.org/10.1016/j.ejrad.2012.04.028

    Article  PubMed  Google Scholar 

  13. Cornelis F, Tricaud E, Lasserre AS, et al. (2015) Multiparametric magnetic resonance imaging for the differentiation of low and high grade clear cell renal carcinoma. European radiology 25(1):24–31. https://doi.org/10.1007/s00330-014-3380-x

    Article  CAS  PubMed  Google Scholar 

  14. Sevcenco S, Heinz-Peer G, Ponhold L, et al. (2014) Utility and limitations of 3-Tesla diffusion-weighted magnetic resonance imaging for differentiation of renal tumors. Eur J Radiol 83(6):909–913. https://doi.org/10.1016/j.ejrad.2014.02.026

    Article  CAS  PubMed  Google Scholar 

  15. Razek AA, Farouk A, Mousa A, et al. (2011) Role of diffusionweighted magnetic resonance imaging in characterization of renal tumors. J Comput Assist Tomogr 35(3):332–336. https://doi.org/10.1097/RCT.0b013e318219fe76

    Article  PubMed  Google Scholar 

  16. Lassel EA, Rao R, Schwenke C, et al. (2014) Diffusion-weighted imaging of focal renal lesions: a meta-analysis. Eur Radiol 24(1):241–249. https://doi.org/10.1007/s00330-013-3004-x

    Article  CAS  PubMed  Google Scholar 

  17. Goya C, Hamidi C, Bozkurt Y, et al. (2015) The role of apparent diffusion coefficient quantification in differentiating benign and malignant renal masses by 3 Tesla magnetic resonance imaging. Balkan Med J 32(3):273–278. https://doi.org/10.5152/balkanmedj.2015.15475

    Article  PubMed  PubMed Central  Google Scholar 

  18. Inci E, Hocaoglu E, Aydin S, et al. (2012) Diffusion-weighted magnetic resonance imaging in evaluation of primary solid and cystic renal masses using the Bosniak classification. Eur J Radiol 81(5):815–820. https://doi.org/10.1016/j.ejrad.2011.02.024

    Article  PubMed  Google Scholar 

  19. Mirka H, Korcakova E, Kastner J, et al. (2015) Diffusion-weighted imaging using 3.0 T MRI as a possible biomarker of renal tumors. Anticancer Res 35(4):2351–2357

    PubMed  Google Scholar 

  20. Kang SK, Zhang A, Pandharipande PV, et al. (2015) DWI for renal mass characterization: systematic review and meta-analysis of diagnostic test performance. AJR Am J Roentgenol 205(2):317–324. https://doi.org/10.2214/AJR.14.13930

    Article  PubMed  Google Scholar 

  21. Lei Y, Wang H, Li HF, et al. (2015) Diagnostic significance of diffusion weighted MRI in renal cancer. Biomed Res Int 2015:172165. https://doi.org/10.1155/2015/172165

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mirka H, Korcakova E, Kastner J, et al. (2015) Diffusion-weighted imaging using 3.0 T MRI as a possible biomarker of renal tumors. Anticancer Res 35(4):2351–2357

    PubMed  Google Scholar 

  23. Hotker AM, Mazaheri Y, Wibmer A, et al. (2016) Use of DWI in the differentiation of renal cortical tumors. AJR Am J Roentgenol 206(1):100–105. https://doi.org/10.2214/AJR.14.13923

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aziz SA, Sznol J, Adeniran A, et al. (2013) Vascularity of primary and metastatic renal cell carcinoma specimens. J Transl Med 11:15. https://doi.org/10.1186/1479-5876-11-15

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rheinheimer S, Stieltjes B, Schneider F, et al. (2012) Investigation of renal lesions by diffusion-weighted magnetic resonance imaging applying intravoxel incoherent motion-derived parameters: initial experience. Eur J Radiol 81(3):e310–e316. https://doi.org/10.1016/j.ejrad.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  26. Chandarana H, Kang SK, Wong S, et al. (2012) Diffusion-weighted intravoxel incoherent motion imaging of renal tumors with histopathologic correlation. Invest Radiol 47(12):688–696. https://doi.org/10.1097/RLI.0b013e31826a0a49

    Article  PubMed  Google Scholar 

  27. Thoeny HC, De Keyzer F (2007) Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur Radiol 17(6):1385–1393. https://doi.org/10.1007/s00330-006-0547-0

    Article  PubMed  Google Scholar 

  28. Goyal A, Sharma R, Bhalla AS, et al. (2012) Diffusion-weighted MRI in renal cell carcinoma: A surrogate marker for predicting nuclear grade and histological subtype. Acta Radiol 53(3):349–358. https://doi.org/10.1258/ar.2011.110415

    Article  PubMed  Google Scholar 

  29. Tanaka H, Yoshida S, Fujii Y, et al. (2011) Diffusion-weighted magnetic resonance imaging in the differentiation of angiomyolipoma with minimal fat from clear cell renal cell carcinoma. Int J Urol 18(10):727–730. https://doi.org/10.1111/j.1442-2042.2011.02824.x

    Article  PubMed  Google Scholar 

  30. Kim SH, Kim CS, Kim MJ, et al. (2016) Differentiation of clear cell renal cell carcinoma from other subtypes and fat-poor angiomyolipoma by use of quantitative enhancement measurement during three-phase MDCT. AJR Am J Roentgenol 206(1):W21–W28. https://doi.org/10.2214/AJR.15.14666

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyi Wang or Huiyi Ye.

Ethics declarations

Funding

This study was supported by National Natural Science Foundation of China (No. 81771785 and 81471641). The funders had no role in research design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Pan, J., Shen, Y. et al. High signal renal tumors on DWI: the diagnostic value of morphological characteristics. Abdom Radiol 44, 239–246 (2019). https://doi.org/10.1007/s00261-018-1728-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-018-1728-4

Keywords

Navigation