Skip to main content
Log in

Evolution of posterior fossa and brain morphology after in utero repair of open neural tube defects assessed by MRI

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To describe characteristics of foetuses undergoing in utero repair of open neural tube defects (ONTD) and assess postoperative evolution of posterior fossa and brain morphology.

Methods

Analysis of pre- and postoperative foetal as well as neonatal MRI of 27 foetuses who underwent in utero repair of ONTD. Type and level of ONTD, hindbrain configuration, posterior fossa and liquor space dimensions, and detection of associated findings were compared between MRI studies and to age-matched controls.

Results

Level of bony spinal defect was defined with exactness of ± one vertebral body. Of surgically confirmed 18 myelomeningoceles (MMC) and 9 myeloschisis (MS), 3 MMC were misdiagnosed as MS due to non-visualisation of a flat membrane on MRI. Hindbrain herniation was more severe in MS than MMC (p < 0.001). After repair, hindbrain herniation resolved in 25/27 cases at 4 weeks and liquor spaces increased. While posterior fossa remained small (p < 0.001), its configuration normalised. Lateral ventricle diameter indexed to cerebral width decreased in 48% and increased in 12% of cases, implying a low rate of progressive obstructive hydrocephalus. Neonatally evident subependymal heterotopias were detected in 33% at preoperative and 50% at postoperative foetal MRI.

Conclusion

MRI demonstrates change of Chiari malformation type II (CM-II) features.

Key Points

Hindbrain herniation is significantly more pronounced in myeloschisis than in myelomeningocele

Resolution of hindbrain herniation 4 weeks after in utero closure of ONTD

MRI is valuable for preoperative assessment and postoperative evaluation following in utero repair

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

bBPD:

Bony biparietal diameter

cBPD:

Cerebral biparietal diameter

CM-II:

Chiari malformation type II

CSF:

Cerebrospinal fluid

CSOA:

Clivus-supraocciput angle

GA:

Gestational age

MMC:

Myelomeningocele

MOMS:

Management of myelomeningocele study

MRI:

Magnetic resonance imaging

MS:

Myeloschisis

ONTD:

Open neural tube defect

PF:

Posterior fossa

PFA:

Posterior fossa area

PFV:

Posterior fossa volume

TDPF:

Transverse diameter of posterior fossa

References

  1. Eurocat European surveillance on congenital anomalies. Available via http://www.eurocat-network.eu/AccessPrevalenceData/PrevalenceTables. Accessed 19 Oct 2016

  2. Rossi A, Gandolfo C, Morana G et al (2006) Current classification and imaging of congenital spinal abnormalities. Semin Roentgenol 41:250–273

    Article  Google Scholar 

  3. Tortori-Donati P, Rossi A, Cama A (2000) Spinal dysraphism: a review of neuroradiological features with embryological correlations and proposal for a new classification. Neuroradiology 42:471–491

    Article  CAS  Google Scholar 

  4. Golden JA, Chernoff GF (1995) Multiple sites of anterior neural tube closure in humans: evidence from anterior neural tube defects (anencephaly). Pediatrics 95:506–510

    CAS  PubMed  Google Scholar 

  5. Van Allen MI, Kalousek DK, Chernoff GF et al (1993) Evidence for multi-site closure of the neural tube in humans. Am J Med Genet 47:723–743

    Article  Google Scholar 

  6. McLone DG, Knepper PA (1989) The cause of Chiari II malformation: a unified theory. Pediatr Neurosci 15:1–12

    Article  CAS  Google Scholar 

  7. Barkovich AJ (2005) Congenital anomalies of the spine. In: Barkovich AJ (ed) Pediatric neuroimaging, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 704–772

    Google Scholar 

  8. Mc Lone DG, Naidich TP (1992) Developmental morphology of the subarachnoid space, brain vasculature, and contiguous structures, and the cause of the Chiari II malformation. AJNR Am J Neuroradiol 13:463–482

    CAS  Google Scholar 

  9. Altman NR, Naidich TP, Braffman BH (1992) Posterior fossa malformations. AJNR Am J Neuroradiol 13:691–724

    CAS  PubMed  Google Scholar 

  10. Batty R, Vitta L, Whitby EH, Griffiths PD (2012) Is there a causal relationship between open spinal dysraphism and Chiari II deformity? A study using in utero magnetic resonance imaging of the fetus. Neurosurgery 70:890–898, discussion 898–9

    Article  Google Scholar 

  11. Hüsler MR, Danzer E, Johnson MP et al (2009) Prenatal diagnosis and postnatal outcome of fetal spinal defects without Arnold-Chiari II malformation. Prenat Diagn 29:1050–1057

    Article  Google Scholar 

  12. Adzick NS, Thom EA, Spong CY et al (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004

    Article  CAS  Google Scholar 

  13. Meuli M, Moehrlen U, Flake A et al (2013) Fetal surgery in Zurich: key features of our first open in utero repair of myelomeningocele. Eur J Pediatr Surg 23:494–498

    PubMed  Google Scholar 

  14. Egloff A, Bulas D (2015) Magnetic resonance imaging evaluation of fetal neural tube defects. Semin Ultrasound CT MR 36:487–500

    Article  Google Scholar 

  15. Ben-Sira L, Garel C, Malinger G, Constantini S (2013) Prenatal diagnosis of spinal dysraphism. Childs Nerv Syst 29:1541–1552

    Article  Google Scholar 

  16. Bulas D (2010) Fetal evaluation of spine dysraphism. Pediatr Radiol 40:1029–1037

    Article  Google Scholar 

  17. Simon EM (2004) MRI of the fetal spine. Pediatr Radiol 34:712–719

    Article  Google Scholar 

  18. Abele TA, Lee SL, Twickler DM (2013) MR imaging quantitative analysis of fetalChiari II malformations and associated open neural tube defects: balanced SSFP versus half-Fourier RARE and interobserver reliability. J Magn Reson Imaging 38:786–793

    Article  Google Scholar 

  19. Sgouros S, Kountouri M, Natarajan K (2006) Posterior fossa volume in children with Chiari malformation Type I. J Neurosurg 105:101–106

    PubMed  Google Scholar 

  20. Grant RA, Heuer GG, Carrión GM et al (2011) Morphometric analysis of posterior fossa after in utero myelomeningocele repair. J Neurosurg Pediatr 7:362–368

    Article  Google Scholar 

  21. D'Addario V, Pinto V, Del Bianco A et al (2001) The clivus-supraocciput angle: a useful measurement to evaluate the shape and size of the fetal posterior fossa and to diagnose Chiari II malformation. Ultrasound Obstet Gynecol 18:146–149

    Article  CAS  Google Scholar 

  22. Woitek R, Dvorak A, Weber M et al (2014) MR-based morphometry of the posterior fossa in fetuses with neural tube defects of the spine. PLoS One 9, e112585

    Article  Google Scholar 

  23. Nishikawa M, Sakamoto H, Hakuba A, Nakanishi N, Inoue Y (1997) Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J Neurosurg 86:40–47

    Article  CAS  Google Scholar 

  24. Tsai T, Bookstein FL, Levey E, Kinsman SL (2002) Chiari-II malformation: a biometric analysis. Eur J Pediatr Surg 12:S12–S18

    Article  Google Scholar 

  25. Osuagwu FC, Lazareff JA, Rahman S, Bash S (2006) Chiari I anatomy after ventriculoperitoneal shunting: posterior fossa volumetric evaluation with MRI. Childs Nerv Syst 22:1451–1456

    Article  Google Scholar 

  26. Chen SC, Simon EM, Haselgrove JC et al (2006) Fetal posterior fossa volume: assessment with MR imaging. Radiology 238:997–1003

    Article  Google Scholar 

  27. Garel C (2004) The role of MRI in the evaluation of the fetal brain with an emphasis on biometry, gyration and parenchyma. Pediatr Radiol 34:694–699

    Article  Google Scholar 

  28. Cardoza JD, Goldstein RB, Filly RA (1988) Exclusion of fetal ventriculomegaly with a single measurement: the width of the lateral ventricular atrium. Radiology 169:711–714

    Article  CAS  Google Scholar 

  29. Evans WA (1975) An encephlographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch Neurol Psychiatr 47:931–937

    Article  Google Scholar 

  30. Tilea B, Alberti C, Adamsbaum et al (2009) Cerebral biometry in fetal magnetic resonance imaging: new reference data. Ultrasound Obstet Gynecol 33:173–181

    Article  CAS  Google Scholar 

  31. Moreira NC, Teixeira J, Themudo R et al (2011) Measurements of the normal fetal brain at gestation weeks 17 to 23: a MRI study. Neuroradiology 53:43–48

    Article  Google Scholar 

  32. Jeelani Y, McComb JG (2011) Congenital hydrocephalus associated with myeloschisis. Childs Nerv Syst 27:1585–1588

    Article  Google Scholar 

  33. Yilmaz A, Müslüman AM, Dalgic N et al (2010) Shunt insertion in newborns with myeloschisis/myelomenigocele and hydrocephalus. J Clin Neurosci 17:1493–1496

    Article  Google Scholar 

  34. Kumar R, Bansal KK, Chhabra DK (2002) Occurrence of split cord malformation in meningomyelocele: complex spina bifida. Pediatr Neurosurg 36:119–127

    Article  Google Scholar 

  35. de Wit OA, den Dunnen WF, Sollie KM et al (2008) Pathogenesis of cerebral malformations in human fetuses with meningomyelocele. Cerebrospinal Fluid Res 5:4

    Article  Google Scholar 

  36. Glenn OA, Cuneo AA, Barkovich AJ, Hashemi Z, Bartha AI, Xu D (2012) Malformations of cortical development: diagnostic accuracy of fetal MR imaging. Radiology 263:843–855

    Article  Google Scholar 

  37. Nagaraj UD, Peiro JL, Bierbrauer KS, Kline-Fath BM (2016) Evaluation of subependymal gray matter heterotopias on fetal MRI. AJNR Am J Neuroradiol 37:720–725

    Article  CAS  Google Scholar 

  38. Geerdink N, van der Vliet T, Rotteveel JJ, Feuth T, Roeleveld N, Mullaart RA (2012) Essential features of Chiari II malformation in MR imaging: an interobserver reliability study-part 1. Childs Nerv Syst 28:977–985

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christin Rethmann.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Christin Rethmann.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Funding

The authors state that this work has not received any funding.

Statistics and biometry

One of the authors has significant statistical expertise.

No complex statistical methods were necessary for this paper.

Ethical approval

Institutional review board approval was obtained.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Study subjects or cohorts overlap

Some study subjects or cohorts have been previously reported in

1. Premiere use of Integra™ artificial skin to close an extensive fetal skin defect during open in utero repair of myelomeningocele. Meuli M, Meuli-Simmen C, Flake AW, Zimmermann R, Ochsenbein N, Scheer I, Mazzone L, Moehrlen U. Pediatr Surg Int. 2013 Dec;29(12):1321–6. doi: 10.1007/s00383-013-3412-7. (one patient, case report)

2. Fetal surgery in Zurich: key features of our first open in utero repair of myelomeningocele. Meuli M, Moehrlen U, Flake A, Ochsenbein N, Huesler M, Biro P, Scheer I, Tharakan S, Dürig P, Zimmermann R. Eur J Pediatr Surg. 2013 Dec;23(6):494–8. doi: 10.1055/s-0032-1329700. No abstract available. (1 patient, case report)

3. Prenatal myelomeningocele repair: Do bladders better? Horst M, Mazzone L, Schraner T, Bodmer C, Möhrlen U, Meuli M, Gobet R. Neurourol Urodyn. 2016 Nov 15. doi: 10.1002/nau.23174. [Epub ahead of print] PMID: 27862250 (all 27 patients)

Methodology

retrospective

diagnostic or prognostic study / observational

performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rethmann, C., Scheer, I., Meuli, M. et al. Evolution of posterior fossa and brain morphology after in utero repair of open neural tube defects assessed by MRI. Eur Radiol 27, 4571–4580 (2017). https://doi.org/10.1007/s00330-017-4807-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-4807-y

Keywords

Navigation