Skip to main content
Log in

Computed tomography angiography of the carotid arteries at low kV settings: a prospective randomised trial assessing radiation dose and diagnostic confidence

  • Vascular-Interventional
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To assess radiation dose and diagnostic image quality of a low-dose (80 kV) versus a standard-dose (120 kV) protocol for computed tomography angiography (CTA) of the supra-aortic arteries.

Methods

64-slice CTA of the supra-aortic arteries was performed in 42 consecutive patients using randomly either 80 or 120 kV at 300 absolute mAs. Intravascular attenuation values, contrast-to-noise (CNR) and signal-to-noise ratio (SNR) measurements were performed at three levels. Two readers assessed image quality by using a four-point scale. The effective dose (ED) was calculated to assess the differences in radiation exposure.

Results

Intravascular attenuation values at 80 kV were higher in the common carotid artery, the carotid bifurcation and the internal carotid artery (p < 0.001). CNR and SNR differed at the internal carotid artery, with higher values in the 80-kV group (p > 0.05). Both readers revealed a significantly better image quality at 120 kV only at the common carotid artery (p < 0.001; p = 0.007). Mean ED was significantly lower at 80-kV (1.23 ± 0.09 vs. 3.99 ± 0.33 mSv; p < 0.001).

Conclusion

Tube voltage reduction to 80 kV in CTA of the supra-aortic arteries allows for significant radiation dose reduction but has limitations at the level of the common carotid artery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Koelemay MJ, Nederkoorn PJ, Reitsma JB, Majoie CB (2004) Systematic review of computed tomographic angiography for assessment of carotid artery disease. Stroke 35:2306–2312. doi:10.1161/01.STR.0000141426.63959.cc

    Article  PubMed  Google Scholar 

  2. Brenner DJ, Hricak H (2010) Radiation exposure from medical imaging: time to regulate? JAMA 304:208–209. doi:10.1001/jama.2010.973

    Article  PubMed  CAS  Google Scholar 

  3. Brenner DJ, Hall EJ (2007) Computed tomography–an increasing source of radiation exposure. New Engl J Med 357(22):2277–2284. doi:10.1056/NEJMra072149

    Article  PubMed  CAS  Google Scholar 

  4. Mazonakis M, Tzedakis A, Damilakis J, Gourtsoyiannis N (2007) Thyroid dose from common head and neck CT examinations in children: is there an excess risk for thyroid cancer induction? Eur Radiol 17:1352–1357. doi:10.1007/s00330-006-0417-9

    Article  PubMed  Google Scholar 

  5. Mnyusiwalla A, Aviv RI, Symons SP (2009) Radiation dose from multidetector row CT imaging for acute stroke. Neuroradiology 51:635–640. doi:10.1007/s00234-009-0543-6

    Article  PubMed  Google Scholar 

  6. Cohnen M, Wittsack HJ, Assadi S et al (2006) Radiation exposure of patients in comprehensive computed tomography of the head in acute stroke. AJNR Am J Neuroradiol 27:1741–1745

    PubMed  CAS  Google Scholar 

  7. Frush DP (2002) Strategies of dose reduction. Pediatr Radiol 32:293–297. doi:10.1007/s00247-002-0684-9

    Article  PubMed  Google Scholar 

  8. Huda W, Lieberman KA, Chang J, Roskopf ML (2004) Patient size and x-ray technique factors in head computed tomography examinations. I. Radiation doses. Med Phys 31:588–594

    Article  PubMed  Google Scholar 

  9. Huda W, Scalzetti EM, Levin G (2000) Technique factors and image quality as functions of patient weight at abdominal CT. Radiology 217:430–435

    PubMed  CAS  Google Scholar 

  10. Bongartz G, Golding SJ, Jurik AG, Leonardi M, van Meerten EvP (1999) European guidelines on quality criteria for computed tomography. Available at http://w3.tue.nl/fileadmin/sbd/Documenten/Leergang/BSM/European_Guidelines_Quality_Criteria_Computed_Tomography_Eur_16252.pdf. Accessed June 14, 2011

  11. Mettler FA Jr, Bhargavan M, Faulkner K et al (2009) Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources–1950–2007. Radiology 253:520–531. doi:10.1148/radiol.2532082010

    Article  PubMed  Google Scholar 

  12. Prokop M (2008) Radiation dose in computed tomography. Risks and challenges. Radiologe 48:229–242. doi:10.1007/s00117-008-1635-8

    Article  PubMed  CAS  Google Scholar 

  13. Nievelstein RA, van Dam IM, van der Molen AJ (2010) Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol 40:1324–1344. doi:10.1007/s00247-010-1714-7

    Article  PubMed  Google Scholar 

  14. Wintersperger B, Jakobs T, Herzog P et al (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341. doi:10.1007/s00330-004-2575-y

    Article  PubMed  CAS  Google Scholar 

  15. Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M, Herold CJ, Prokop M (2006) CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 241:899–907. doi:10.1148/radiol.2413040128

    Article  PubMed  Google Scholar 

  16. Watanabe H, Kanematsu M, Miyoshi T et al (2010) Improvement of image quality of low radiation dose abdominal CT by increasing contrast enhancement. AJR Am J Roentgenol 195:986–992. doi:10.2214/AJR.10.4456

    Article  PubMed  Google Scholar 

  17. Waaijer A, Prokop M, Velthuis BK, Bakker CJ, de Kort GA, van Leeuwen MS (2007) Circle of Willis at CT angiography: dose reduction and image quality–reducing tube voltage and increasing tube current settings. Radiology 242:832–839. doi:10.1148/radiol.2423051191

    Article  PubMed  Google Scholar 

  18. Huda W, Bushong SC (2001) In x-ray computed tomography, technique factors should be selected appropriate to patient size. Med Phys 28:1543–1545

    Article  PubMed  CAS  Google Scholar 

  19. Fleischmann D (2003) High-concentration contrast media in MDCT angiography: principles and rationale. Eur Radiol 13(Suppl 3):N39–N43

    Article  PubMed  Google Scholar 

  20. Nagahata M, Abe Y, Ono S et al (2007) Attenuation values of the intracranial arterial and venous vessels by bolus injection of various contrast agents: a study with a single-detector helical CT scanner. Radiat Med 25:89–93. doi:10.1007/s11604-006-0107-1

    Article  PubMed  Google Scholar 

  21. Fujikawa A, Tsuchiya K, Imai M, Nitatori T (2010) CT angiography covering both cervical and cerebral arteries using high iodine concentration contrast material with dose reduction on a 16 multidetector-row system. Neuroradiology 52:291–295. doi:10.1007/s00234-009-0611-y

    Article  PubMed  Google Scholar 

  22. Huda W, Lieberman KA, Chang J, Roskopf ML (2004) Patient size and x-ray technique factors in head computed tomography examinations. II. Image quality. Med Phys 31:595–601

    Article  PubMed  Google Scholar 

  23. Sigal-Cinqualbre AB, Hennequin R, Abada HT, Chen X, Paul JF (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231:169–174. doi:10.1148/radiol.2311030191

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Loewe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beitzke, D., Wolf, F., Edelhauser, G. et al. Computed tomography angiography of the carotid arteries at low kV settings: a prospective randomised trial assessing radiation dose and diagnostic confidence. Eur Radiol 21, 2434–2444 (2011). https://doi.org/10.1007/s00330-011-2188-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-011-2188-1

Keywords

Navigation