Study design and patient enrolment conditions
This study was a non-inferiority, randomised, double-blind, prospective, multi-centre trial in patients referred for CT angiography of the abdominal aorta and its branches. Nine European centres were involved in this trial between August 2006 and February 2008. The study protocol was approved by the local Ethics Committees and Competent Authorities.
As this study was designed to reflect the conditions of daily routine, patients were included in a consecutive manner, regardless of the indication for the examination. Patients between 18 and 85 years of age were eligible for study participation. A history of previous (open surgical or endovascular) vascular treatment in the abdomen was not an exclusion criterion. Patients with haemodynamic instability, non-compensated heart failure or hypertension (systolic blood pressure ≥180 mmHg or diastolic blood pressure ≥110 mmHg) were not included. In addition, patients with severe renal insufficiency [defined as estimated creatinine clearance (Cockroft and Gault) below 30 ml/min], treatment with diuretics or biguanides within 48 h before CT angiography, known thyrotoxicosis or a history of hypersensitivity to iodinated contrast agents were not included. Breast-feeding or pregnant women were also excluded from participation in this trial.
After providing written, informed consent, patients were randomised into two examination groups according to a randomisation list stratified on centres and balanced every four patients. Patients in the first group were to undergo the abdominal CT angiography with injection of iobitridol 350 mgI/ml (Xenetix®, Guerbet, Roissy, France); patients in the second group were to be examined by means of CT angiography with injection of iomeprol 400 mgI/ml (Iomeron®, Bracco, Italy).
CT angiography
All patients included in the present evaluation were scheduled to undergo CT angiography of the abdominal aorta and abdominal arteries. All examinations were performed on 64-slice single-source CT systems (two Siemens SOMATOM Sensation, four General Electrics LightSpeed VCT, two Philips Brillance 64), and on a dual-source Siemens SOMATOM Definition used as a single-source.
Imaging protocol
To allow direct measurement of abdominal arterial enhancement, the study examination consisted of two steps including unenhanced imaging of the abdomen followed by abdominal CT angiography during the arterial first pass. If clinically indicated, additional venous or late-phase imaging could also be performed outside the study protocol.
Study centres were advised to use their own routinely used imaging protocol for abdominal CT angiography. Only a maximum allowed volume of 150 ml was predefined by the study protocol; all additional parameters, including injection rate and volume, were to be determined by the investigators. No compensations based on the different iodine concentrations of the contrast agents being compared were performed, as the investigators were blinded to both products. Thus, iodine flux, meaning the iodine administration per unit of time, was lower in the group receiving iobitridol than in the group receiving iomeprol.
MDCT angiography was performed using automatic bolus detection software (Smart Prep®, Care Bolus®, or equivalent) to identify peak contrast enhancement and to launch the acquisition. The whole abdomino-iliac system from above the suprarenal aorta to the femoral bifurcation was to be covered in one imaging procedure.
As the study centres were asked to use their own clinically established examination protocols, the kilovoltage (kV) and milliampere seconds (mAs) values differed among centres as did the average duration of the examination.
Injection of contrast medium
To ensure contrast agent administration in double-blind conditions, allocation of patients to one of the two groups (iobitridol or iomeprol group) and the preparation of the contrast agent, pump and injection were performed by a radiographer or nurse who was not involved in the subsequent evaluation. The contrast agent used was not identified on the images to allow blinded reading.
Patient follow-up
Clinical safety monitoring started at inclusion and lasted until 1 h after the end of the examination.
Evaluation
All CT images were assessed on-site by one local investigator at each participating hospital. The investigator was blinded to the contrast material used for each patient.
Diagnostic efficacy
Diagnostic efficacy (primary endpoint) of the CT examination was defined as the level of available information for diagnosis provided by the MDCT examination. Readers rated the diagnostic efficacy of the CT angiographies using a four-point scale ranging from 0, i.e. not satisfactory (“not providing enough information = complementary examination recommended”), to 3, i.e. totally satisfactory (“providing the expected information”), with level 1 indicating not satisfactory (“not providing all the expected information = could need a complementary examination”) and 2 representing satisfactory (“providing sufficient information”). The primary endpoint was calculated within both product groups by a cumulative proportion of those patients who presented with satisfactory (level 2) to totally satisfactory (level 3) images, and then the two product groups were compared.
Image quality according to vascular territories
As one of the secondary study criteria, the quality of images was evaluated in 16 pre-specified segments from the aorto-ilio-femoral axis: the suprarenal, the juxtarenal and the infrarenal aorta; the coeliac axis and its branches; the superior and inferior mesenteric artery; the right and left renal artery; the right and left common and external iliac artery; the right and left hypogastric artery; and the right and left common femoral artery.
In all of these 16 arterial segments, image quality was rated according to a four-point scale, i.e. 0 (null), 1 (poor), 2 (good) and 3 (excellent). If the segment was not delineated by the field of view (FOV), it was counted as “not applicable”. In the case of a 0 rating or poor quality, the reason for insufficient quality was indicated. This endpoint was calculated within both product groups by a cumulative proportion of vascular segments that presented with good (2) and excellent (3) image quality, and then the two product groups were compared.
Quality of vascular wall visualisation
Additionally, the quality of arterial wall visualisation within the 16 segments defined above was assessed. This evaluation was focused on changes within the vascular wall, including internal deposition of thrombotic material or inflammatory reaction, if present, and used the four-point scale mentioned above. In the case of a 0 rating or poor quality, the reason for this insufficient quality was indicated. This criterion was calculated within both product groups by a cumulative proportion of vascular wall segments that displayed with good (2) and excellent (3) image quality, and then the two groups were compared.
Quantification of arterial enhancement
As an additional endpoint, arterial enhancement was measured in eight predefined areas, including the suprarenal and the infrarenal aorta, the right and left renal artery, the right and left common iliac artery, and the right and left common femoral artery, and compared between the two groups. For measurement purposes, regions of interest (ROIs) were defined on unenhanced as well as enhanced images in the same table position (Fig. 1). According to the study protocol, the circumference of the ROI should not extend beyond the internal limit of the arterial wall. For the aorta, the ROI was to be located in the middle of the vessel and for its branches in the first 2 cm (Fig. 1). The two groups’ average absolute and relative enhancements were compared.
Clinical safety
In addition to the efficacy evaluation, the safety profile of both contrast agents was investigated, and any event, starting from inclusion until the end of the follow-up period (1 h after the end of CT angiography), was collected and reported.
Statistical evaluation
Assuming that in the iobitridol group and the iomeprol group at least 90% of patients would provide CT images with a satisfactory to totally satisfactory level of diagnostic information [21, 22], non-inferiority was defined as a difference between the two products (Δ = Piobitridol - Piomeprol) that was statistically higher than the clinical non-inferiority limit set at Δ0 = −10% in the study (maximum negative difference allowed between iobitridol and iomeprol). The study was to be demonstrative if the 95% confidence interval of the difference excluded the Δ0 = −10% clinical non-inferiority limit.
Before starting the trial, the sample size of the study (310 patients) was calculated so that the non-inferiority of iobitridol (350 mgI/ml) in providing the same level of diagnostic information as iomeprol (400 mgI/ml) could be statistically demonstrated with 80% power and 5% type-one error.
Confidence intervals and associated P values were computed for the estimated parameters based on the asymptotic normality of maximum likelihood estimators and using the Wald χ2 statistics in the SAS Genmod procedure. This procedure computes a generalised linear model, particularly suitable for adjusting on covariates and modelling clustered data (assessments at segment level nested in patients in the present study). In addition, the exact confidence interval and exact P value were also computed for the primary endpoint using StatXact software (Cytel Statistical Software & Services).