Skip to main content
Log in

Three-dimensional contrast-enhanced magnetic-resonance angiography of the renal arteries: Interindividual comparison of 0.2 mmol/kg gadobutrol at 1.5 T and 0.1 mmol/kg gadobenate dimeglumine at 3.0 T

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The purpose was to evaluate the image quality of high-spatial resolution MRA of the renal arteries at 1.5 T after contrast-agent injection of 0.2 mmol/kg body weight (BW) in an interindividual comparison to 3.0 T after contrast-agent injection of 0.1 mmol/kg BW contrast agent (CA). After IRB approval and informed consent, 40 consecutive patients (25 men, 15 women; mean age 53.9 years) underwent MRA of the renal arteries either at a 1.5-T MR system with 0.2 mmol/kg BW gadobutrol or at a 3.0-T MR scanner with 0.1 mmol/kg BW gadobenate dimeglumine used as CA in a randomized order. A constant volume of 15 ml of these contrast agents was applied. The spatial resolution of the MRA sequences was 1.0 × 0.8 × 1.0 mm3 at 1.5 T and 0.9 × 0.8 × 0.9 mm3 at 3.0 T, which was achieved by using parallel imaging acceleration factors of 2 at 1.5 T and 3 at 3.0 T, respectively. Two radiologists blinded to the administered CA and the field strength assessed the image quality and the venous overlay for the aorta, the proximal and distal renal arteries independently on a four-point Likert-type scale. Phantom measurements were performed for a standardized comparison of SNR at 1.5 T and 3.0 T. There was no significant difference (p > 0.05) between the image quality at 3.0 T with 0.1 mmol/kg BW gadobenate dimeglumine compared to the exams at 1.5 T with 0.2 mmol/kg BW gadobutrol. The median scores were between 3 and 4 (good to excellent vessel visualization) for the aorta (3 at 1.5 T/4 at 3.0 T for reader 1 and 2). For the proximal renal arteries, median scores were 3 for the left and right renal artery at 1.5 T for both readers. At 3.0 T, median scores were 3 (left proximal renal artery) and 4 (right proximal renal artery) for reader 1 and 3 (left/right) for reader 2 at 3.0 T. For the distal renal arteries, median scores were between 2 and 3 at both field strengths (moderate and good) for both readers. The κ values for both field strengths were comparable and ranged between 0.571 (moderate) for the distal renal arteries and 0.905 (almost perfect) for the proximal renal arteries. In the phantom measurements, a 40% higher SNR was found for the measurements at 3 T with gadobenate dimeglumine. High-spatial resolution renal MRA at 3.0 T with 0.1 mmol/kg BW gadobenate dimeglumine yields at least equal image quality compared with renal MRA at 1.5 T with 0.2 mmol/kg BW gadobutrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Prince MR (1994) Gadolinium-enhanced MR aortography. Radiology 191:155–164

    PubMed  CAS  Google Scholar 

  2. Tan KT, van Beek EJ, Brown PW et al (2002) Magnetic resonance angiography for the diagnosis of renal artery stenosis: a meta-analysis. Clin Radiol 57:617–624

    Article  PubMed  CAS  Google Scholar 

  3. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  PubMed  CAS  Google Scholar 

  4. Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  5. Nael K, Michaely HJ, Villablanca P et al (2006) Time-resolved contrast enhanced magnetic resonance angiography of the head and neck at 3.0 Tesla: Initial results. Invest Radiol 41:116–124

    Article  PubMed  Google Scholar 

  6. Reeder SB, Wintersperger BJ, Dietrich O et al (2005) Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med 54:748–754

    Article  PubMed  Google Scholar 

  7. Campeau NG, Huston J, 3rd, Bernstein MA, Lin C, Gibbs GF (2001) Magnetic resonance angiography at 3.0 Tesla: initial clinical experience. Top Magn Reson Imaging 12:183–204

    Article  PubMed  CAS  Google Scholar 

  8. Runge VM, Biswas J, Wintersperger BJ et al (2006) CMR 2005: 6.03: The efficacy of MultiHance (gadobenate dimeglumine or Gd-BOPTA) at 1.5 and 3 T in a rat brain glioma model. Contrast Media Mol Imaging 1:68–69

    Article  Google Scholar 

  9. Fenchel M, Nael K, Deshpande VS et al (2006) Renal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directions. Invest Radiol 41:697–703

    Article  PubMed  Google Scholar 

  10. Michaely HJ, Nael K, Schoenberg SO et al (2005) The feasibility of spatial high-resolution magnetic resonance angiography (MRA) of the renal arteries at 3.0 T. Rofo 177:800–804

    PubMed  CAS  Google Scholar 

  11. de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230:652–659

    Article  PubMed  Google Scholar 

  12. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724

    Article  PubMed  Google Scholar 

  13. Nael K, Michaely HJ, Lee M et al (2006) Dynamic pulmonary perfusion and flow quantification with MR imaging, 3.0T vs. 1.5T: initial results. J Magn Reson Imaging 24:333–339

    Article  PubMed  Google Scholar 

  14. Tombach B, Benner T, Reimer P et al (2003) Do highly concentrated gadolinium chelates improve MR brain perfusion imaging? Intraindividually controlled randomized crossover concentration comparison study of 0.5 versus 1.0 mol/L gadobutrol. Radiology 226:880–888

    Article  PubMed  Google Scholar 

  15. Schoenberg SO, Rieger J, Weber CH et al (2005) High-spatial-resolution MR angiography of renal arteries with integrated parallel acquisitions: comparison with digital subtraction angiography and US. Radiology 235:687–698

    Article  PubMed  Google Scholar 

  16. Trattnig S, Pinker K, Ba-Ssalamah A, Nöbauer-Huhmann IM (2006) The optimal use of contrast agents at high field MRI. Eur Radiol 16:1280–1287

    Article  PubMed  Google Scholar 

  17. Zech CJ, Herrmann KA, Huber A et al (2004) High-resolution MR-imaging of the liver with T2-weighted sequences using integrated parallel imaging: comparison of prospective motion correction and respiratory triggering. J Magn Reson Imaging 20:443–450

    Article  PubMed  Google Scholar 

  18. Knopp MV, Schoenberg SO, Rehm C et al (2002) Assessment of gadobenate dimeglumine for magnetic resonance angiography: phase I studies. Invest Radiol 37:706–715

    Article  PubMed  CAS  Google Scholar 

  19. Kirchin MA, Runge VM (2003) Contrast agents for magnetic resonance imaging: safety update. Top Magn Reson Imaging 14:426–435

    Article  PubMed  Google Scholar 

  20. Michaely HJ, Dietrich O, Nael K et al (2006) MRA of abdominal vessels: technical advances. Eur Radiol 16:1637–1650

    Article  PubMed  Google Scholar 

  21. Herborn CU, Lauenstein TC, Ruehm SG et al (2003) Intraindividual comparison of gadopentetate dimeglumine, gadobenate dimeglumine, and gadobutrol for pelvic 3D magnetic resonance angiography. Invest Radiol 38:27–33

    Article  PubMed  CAS  Google Scholar 

  22. Tombach B, Heindel W (2002) Value of 1.0- M gadolinium chelates: review of preclinical and clinical data on gadobutrol. Eur Radiol 12:1550–1556

    Article  PubMed  Google Scholar 

  23. Goyen M, Lauenstein TC, Herborn CU et al (2001) 0.5 M Gd chelate (Magnevist) versus 1.0 M Gd chelate (Gadovist): dose-independent effect on image quality of pelvic three-dimensional MR-angiography. J Magn Reson Imaging 14:602–607

    Article  PubMed  CAS  Google Scholar 

  24. Knopp MV, von Tengg-Kobligk H, Floemer F, Schoenberg SO (1999) Contrast agents for MRA: future directions. J Magn Reson Imaging 10:314–316

    Article  PubMed  CAS  Google Scholar 

  25. Cavagna FM, Maggioni F, Castelli PM et al (1997) Gadolinium chelates with weak binding to serum proteins. A new class of high-efficiency, general purpose contrast agents for magnetic resonance imaging. Invest Radiol 32:780–796

    Article  PubMed  CAS  Google Scholar 

  26. Kirchin MA, Pirovano GP, Spinazzi A (1998) Gadobenate dimeglumine (Gd-BOPTA). An overview. Invest Radiol 33:798–809

    Article  PubMed  CAS  Google Scholar 

  27. Goyen M, Debatin JF (2003) Gadobenate dimeglumine (MultiHance) for magnetic resonance angiography: review of the literature. Eur Radiol 13(3):N19–N27

    Article  PubMed  Google Scholar 

  28. Thomsen HS (2006) Nephrogenic systemic fibrosis: a serious late adverse reaction to gadodiamide. Eur Radiol 16:2619–2621

    Article  PubMed  Google Scholar 

  29. Broome DR, Girguis MS, Baron PW et al (2007) Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. AJR Am J Roentgenol 188:586–592

    Article  PubMed  Google Scholar 

  30. Grobner T (2006) Gadolinium-a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108

    Article  PubMed  CAS  Google Scholar 

  31. Boyd AS, Zic JA, Abraham JL (2007) Gadolinium deposition in nephrogenic fibrosing dermopathy. J Am Acad Dermatol 56:27–30

    Article  PubMed  Google Scholar 

  32. Thomsen HS (2007) European Society of Urogenital Radiology guidelines on contrast media application. Curr Opin Urol 17:70–76

    Article  PubMed  Google Scholar 

  33. Rinck PA, Muller RN (1999) Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents. Eur Radiol 9:998–1004

    Article  PubMed  CAS  Google Scholar 

  34. Allkemper T, Heindel W, Kooijman H, Ebert W, Tombach B (2006) Effect of field strengths on magnetic resonance angiography: comparison of an ultrasmall superparamagnetic iron oxide blood-pool contrast agent and gadopentetate dimeglumine in rabbits at 1.5 and 3.0 tesla. Invest Radiol 41:97–104

    Article  PubMed  Google Scholar 

  35. Hany TF, McKinnon GC, Leung DA et al. (1997) Optimization of contrast timing for breath-hold three-dimensional MR angiography. J Magn Reson Imaging 7:551–556

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike I. Attenberger.

Additional information

Ulrike I. Attenberger and Henrik J. Michaely contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attenberger, U.I., Michaely, H.J., Wintersperger, B.J. et al. Three-dimensional contrast-enhanced magnetic-resonance angiography of the renal arteries: Interindividual comparison of 0.2 mmol/kg gadobutrol at 1.5 T and 0.1 mmol/kg gadobenate dimeglumine at 3.0 T. Eur Radiol 18, 1260–1268 (2008). https://doi.org/10.1007/s00330-008-0873-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-0873-5

Keywords

Navigation