Skip to main content

Advertisement

Log in

The interaction of biotic and abiotic factors at multiple spatial scales affects the variability of CO2 fluxes in polar environments

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Climate change may turn Arctic biomes from carbon sinks into sources and vice versa, depending on the balance between gross ecosystem photosynthesis, ecosystem respiration (ER) and the resulting net ecosystem exchange (NEE). Photosynthetic capacity is species specific, and thus, it is important to quantify the contribution of different target plant species to NEE and ER. At Ny Ålesund (Svalbard archipelago, Norway), we selected different Arctic tundra plant species and measured CO2 fluxes at plot scale and photosynthetic capacity at leaf scale. We aimed to analyze trends in CO2 fluxes during the transition seasons (beginning vs. end of the growing season) and assess which abiotic (soil temperature, soil moisture, PAR) and biotic (plot type, phenology, LAI, photosynthetic capacity) factors influenced CO2 emissions. NEE and ER differed between vegetation communities. All communities acted as CO2 sources, with higher source strength at the beginning than at the end of the growing season. The key factors affecting NEE were soil temperature, LAI and species-specific photosynthetic capacities, coupled with phenology. ER was always influenced by soil temperature. Measurements of photosynthetic capacity indicated different responses among species to light intensity, as well as suggesting possible gains in response to future increases in atmospheric CO2 concentrations. Species-specific adaptation to low temperatures could trigger significant feedbacks in a climate change context. Our data highlight the need to quantify the role of dominant species in the C cycle (sinks or sources), as changes of vegetation composition or species phenology in response to climate change may have great impact on the regional CO2 balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A max :

Light-saturated photosynthesis rate

δ13C:

Carbon isotope composition

Δ :

Carbon isotope discrimination

CTT:

Climate change tower

ER:

Ecosystem respiration

GEP:

Gross primary photosynthesis

NEE:

Net ecosystem exchange

V c,max :

Maximum rate of Rubisco carboxylase activity

References

  • André M (1993) Les versants du Spitsberg. Presses Universitaires de Nancy, Nancy

    Google Scholar 

  • Arndal MF, Illeris L, Michelsen A, Albert K, Tamstorf M, HansenSource BU (2009) Seasonal variation in gross ecosystem production, plant biomass, and carbon and nitrogen pools in five high arctic vegetation types. Arct Antarct Alp Res 41:164–173

    Article  Google Scholar 

  • Asner JP, Scurlock JMO, Hicke JA (2003) Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Glob Ecol Biogeogr 12:191–205

    Article  Google Scholar 

  • Barclay HJ (1998) Conversion of total leaf area to projected leaf area in lodgepole pine and Douglas-fir. Tree Physiol 18:185–193

    Article  PubMed  Google Scholar 

  • Bartak M, Vaczi P, Hajek J (2012) Photosynthetic activity in three vascular species of Spitsbergen vegetation during summer season in response to microclimate. Pol Polor Res 33:443–462

    Google Scholar 

  • Bender MM (1971) Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:1239–1244

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Pimentel C, Long SP (2003) In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant, Cell Environ 26:1419–1430

    Article  CAS  Google Scholar 

  • Billing WD (1987) Constraints to plant growth, reproduction, and establishment in arctic environments. Arct Alp Res 19:357–365

    Article  Google Scholar 

  • Björkman MP, Morgner E, Björk RG, Cooper EJ, Elberling B, Klemedtsson L (2010) A comparison of annual and seasonal carbon dioxide effluxes between sub-arctic Sweden and high-arctic Svalbard. Polar Res 29:75–84

    Article  Google Scholar 

  • Bliss LC, Svoboda J (1984) Plant communities and plant production in the western Queen Elizabeth Islands. Holarct Ecol 7:325–344

    Google Scholar 

  • Boike J, Ippisch O, Overduin PP, Hagedorn B, Roth K (2008) Water, heat and solute dynamics of a mud boil, Spitsbergen. Geomorphology 95:61–73

    Article  Google Scholar 

  • Brüggemann N, Gessler A, Kayler Z et al (2011) Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences 8:3457–3489

    Article  Google Scholar 

  • Brugnoli E, Farquhar GD (2000) Photosynthetic Fractionation of Carbon Isotopes. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Advances in photosynthesis vol 9: photosynthesis: physiology and metabolism. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Brugnoli E, Scartazza A, Lauteri M, Monteverdi MC, Máguas C (1998) Carbon isotope discrimination in structural and non-structural carbohydrates in relation to productivity and adaptation to unfavourable conditions. Stable Isotopes. In: Griffiths H (ed) Integration of biological, ecological and geochemical processes. BIOS Scientific Publishers, Oxford, pp 133–144

    Google Scholar 

  • Bunce JA (2008) Acclimation of photosynthesis to temperature in Arabidopsis thaliana and Brassica oleracea. Photosynth 46:517–524

    Article  CAS  Google Scholar 

  • Cannone N, Guglielmin M, Gerdol R (2004) Relationships between vegetation patterns and periglacial landforms in north-western Svalbard. Polor Biol 27:562–571

    Google Scholar 

  • Cernusak LA, Ubierna N, Winter K, Holtum JAM, Marshall JD, Farquhar GD (2013) Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol 200:950–965

    Article  CAS  PubMed  Google Scholar 

  • Chapin FS, Woodwell GM, Randerson JT et al (2006) Reconciling carbon—cycle concepts, terminology, and methods. Ecosystem 9:1041–1050

    Article  CAS  Google Scholar 

  • Christiansen CT, Schmidt NM, Michelsen A (2012) High arctic dry heath CO2 exchange during the early cold season. Ecosystem 15:1083–1092

    Article  CAS  Google Scholar 

  • Elberling B (2007) Annual soil CO2 effluxes in the high arctic: the role of snow thickness and vegetation type. Soil Biol Biochem 39:646–654

    Article  CAS  Google Scholar 

  • Elvebakk A (1994) A survey of plant associations and alliances from Svalbard. J Veg Sci 5:791–802

    Article  Google Scholar 

  • Euskirchen ES, Bret-Harte MS, Scott GJ, Edgar C, Shaver GR (2012) Seasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska. Ecosphere 3:4. doi:10.1890/ES11-00202.1

    Article  Google Scholar 

  • Fan Y, Zhong Z, Zhang X (2011) Determination of photosynthetic parameters V c,max and J max for a C3 plant (spring hulless barley) at two altitudes on the Tibetan Plateau. Agric For Meteorol 151:1481–1487

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the inter-cellular carbon-dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubic KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Groendahl L, Friborg T, Soegaard H (2007) Temperature and snow-melt controls on interannual variability in carbon exchange in the high arctic. Theor Appl Clim 88:111–125

    Article  Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Kirschbaum MUF (2004) Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Glob Chang Biol 10:1870–1877

    Article  Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    Article  PubMed  Google Scholar 

  • Kositsup B, Montpied P, Kasemsap P, Thaler P, Amélio T, Dreyer E (2009) Photosynthetic capacity and temperature responses of photosynthesis of rubber trees (Hevea brasiliensis Müll. Arg.) acclimate to changes in ambient temperatures. Trees Struct Funct 23:357–365

    Article  CAS  Google Scholar 

  • Koven CD, Ringeval B, Friedlingstein P et al (2011) Permafrost carbon-climate feedbacks accelerate global warming. PNAS 108:14769–14774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafleur PM, Humphreys ER (2008) Spring warming and carbon dioxide exchange over low Arctic tundra. Glob Chang Biol 14:740–756

    Article  Google Scholar 

  • Lafleur PM, Humphreys ER, St. Louis VL et al (2012) Variation in peak growing season net ecosystem production across the Canadian arctic. Environ Sci Technol 46:7971–7977

    Article  CAS  PubMed  Google Scholar 

  • Lloyd CR (2001) The measurement and modeling of the carbon dioxide exchange at a high arctic site in Svalbard. Glob Chang Biol 7:405–426

    Article  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54(392):2393–2401

    Article  CAS  PubMed  Google Scholar 

  • Lüers J, Westermann S, Piel K, Boike J (2014) Annual CO2 budget and seasonal CO2 exchange signals at a high arctic permafrost site on Spitsbergen, Svalbard archipelago. Biogeosciences 11:6307–6322

    Article  Google Scholar 

  • Lund M et al (2010) Variability in exchange of CO2 across 12 northern peatland and tundra sites. Glob Chang Biol 16:2436–2448

    Google Scholar 

  • Marushchak ME, Kiepe I, Biasi C et al (2013) Carbon dioxide balance of subarctic tundra from plot to regional scales. Biogeosciences 10:437–452

    Article  Google Scholar 

  • McFadden JP, Eugster W, Chapin FS (2003) A regional study of the controls on water vapor and CO2 exchange in Arctic tundra. Ecology 84:2762–2776

    Article  Google Scholar 

  • McGuire AD, Anderson LG, Christensen TR et al (2009) Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79:523–555

    Article  Google Scholar 

  • McGuire AD, Christensen TR, Hayes D et al (2012) An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences 9:3185–3204

    Article  CAS  Google Scholar 

  • Molau U, Molgaard P (eds) (1996) ITEX manual. Danish Polar Center, Denmark. ISBN 87-90369-04-1

    Google Scholar 

  • Morgner E, Elberling B, Strebel D, Cooper EJ (2010) The importance of winter in annual ecosystem respiration in the high arctic: effects of snow depth in two vegetation types. Polar Res 29:58–74

    Article  CAS  Google Scholar 

  • Muraoka H, Noda H, Uchida M, Ohtsuka T, Koizumi H, Nakatsubo T (2008) Photosynthetic characteristics and biomass distribution of the dominant vascular plant species in a high arctic tundra ecosystem, Ny-Ålesund, Svalbard: implications for their role in ecosystem carbon gain. J Plant Res 121:137–145

    Article  CAS  PubMed  Google Scholar 

  • Nakatsubo T, Fujiyoshi M, Yoshitake S, Koizumi H, Uchida M (2010) Colonization of the polar willow Salix polaris on the early stage of succession after glacier retreat in the high arctic, Ny-Alesund, Svalbard. Polar Res 29:385–390. doi:10.1111/j.1751-8369.2010.00170.x

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Bigham JM et al (eds) Soil Science Society of America and American Society of Agronomy. Methods of soil analysis. Part 3: chemical methods-SSSA. Book series no. 5. Madison, WI, Chapter 34, pp 1001–1006

  • Norby RJ, Luo Y (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281–293

    Article  Google Scholar 

  • Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2–do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280

    Article  Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 27:553–567

    Article  Google Scholar 

  • Oberbauer SF, Tweedie CE, Welker JM et al (2007) Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecol Monogr 77:221–238

    Article  Google Scholar 

  • Possell M, Hewitt CN (2009) Gas exchange and photosynthetic performance of the tropical tree Acacia nigrescens when grown in different CO2 concentrations. Planta 229:837–846

    Article  CAS  PubMed  Google Scholar 

  • Ronning OI (1986) The flora of Svalbard. Norsk Polar Institutt, Oslo

    Google Scholar 

  • Schmidt H-L, Robins RJ, Werner RA (2015) Multi factorial in vivo stable isotope fractionation: causes, correlations, consequences and applications. Isotopes Environ Health Stud 51:155–199

    Article  CAS  PubMed  Google Scholar 

  • Shaver GR, Rastetter EB, Salmon V et al (2013) Pan-Arctic modelling of net ecosystem exchange of CO2. Philos Trans R Soc B 368:20120485

    Article  CAS  Google Scholar 

  • Sjögerstern S, van der Wal R, Woodin SJ (2006) Small-scale hydrological variation determines landscape CO2 fluxes in the high arctic. Biogeochem 80:205–216

    Article  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov SA (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles. doi:10.1029/2008GB003327

    Google Scholar 

  • Uchida M, Kishimoto A, Muraoka H (2010) Seasonal shift in factors controlling net ecosystem production in a high arctic terrestrial ecosystems. J Plant Res 123:79–85

    Article  PubMed  Google Scholar 

  • Welker JM, Fahnestock JT, Henry GHR et al (2004) CO2 exchange in three Canadian high arctic ecosystems: response to long-term experimental warming. Glob Chang Biol 10:1981–1995

    Article  Google Scholar 

  • Yoshitake S, Uchida M, Koizumi H, Kanda H, Nakatsubo T (2010) Production of biological soil crusts in the early stage of primary succession on a high arctic glacier foreland. New Phytol 186:451–460

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Department of Earth System Science and Environmental Technologies of the National Council of Research (CNR) for funding the field activities carried out in 2012 and 2013, the research station “Dirigibile Italia” and KingsBay, Vito Vitale and Roberto Sparapani for logistic support, Emiliano Liberatori and Laura Caiazzo for local support. Mauro Guglielmin, Luigi Mazari Villanova, Roberto Gambillara for their help in the field. Luciano Spaccino for carbon isotope analysis. We thank Prof. Peter Convey for assistance in the English revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Cannone.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cannone, N., Augusti, A., Malfasi, F. et al. The interaction of biotic and abiotic factors at multiple spatial scales affects the variability of CO2 fluxes in polar environments. Polar Biol 39, 1581–1596 (2016). https://doi.org/10.1007/s00300-015-1883-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1883-9

Keywords

Navigation