Skip to main content

Advertisement

Log in

Warming Effects on Ecosystem Carbon Fluxes Are Modulated by Plant Functional Types

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Despite the importance of future carbon (C) pools for policy and land management decisions under various climate change scenarios, predictions of these pools under altered climate vary considerably. Chronic warming will likely impact both ecosystem C fluxes and the abundance and distribution of plant functional types (PFTs) within systems, potentially interacting to create novel patterns of C exchange. Here, we report results from a 3-year warming experiment using open top chambers (OTC) on the Tibetan Plateau meadow grassland. Warming significantly increased C uptake through gross primary productivity (GPP) but not ecosystem respiration (ER), resulting in a 31.0% reduction in net ecosystem exchange (NEE) in warmed plots. The OTC-induced changes in ecosystem C fluxes were not fully explained by the corresponding changes in soil temperature and moisture. Warming treatments significantly increased the biomass of graminoids and legumes by 12.9 and 27.6%. These functional shifts were correlated with enhanced local GPP, but not ER, resulting in more negative NEE in plots with larger increases in graminoid and legume biomass. This may be due to a link between greater legume abundance and higher levels of total inorganic nitrogen, which can potentially drive higher GPP, but not higher ER. Overall, our results indicate that C-climate feedbacks might be closely mediated by climate-induced changes in PFTs. This highlights the need to consider the impacts of changes in PFTs when predicting future responses of C pools under altered climate scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jónsdóttir IS, Laine K, Lévesque E, Marion GM, Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Totland Ø, Turner PL, Walker LJ, Webber PJ, Welker JM, Wookey PA. 1999. Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecol Monogr 69:491–511.

    Google Scholar 

  • Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D, Bönisch G, Bradford MG, Cernusak LA, Cosio EG. 2015. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol 206:614–36.

    Article  CAS  PubMed  Google Scholar 

  • Bai E, Li S, Xu W, Li W, Dai W, Jiang P. 2013. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol 199:441–51.

    Article  Google Scholar 

  • Ballantyne A, Alden C, Miller J, Tans P, White J. 2012. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488:70–2.

    Article  CAS  PubMed  Google Scholar 

  • Brient F, Bony S. 2013. Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Clim Dyn 40:2415–31.

    Article  Google Scholar 

  • Čapek P, Diáková K, Dickopp J-E, Bárta J, Wild B, Schnecker J, Alves RJE, Aiglsdorfer S, Guggenberger G, Gentsch N. 2015. The effect of warming on the vulnerability of subducted organic carbon in arctic soils. Soil Biol Biochem 90:19–29.

    Article  Google Scholar 

  • Cardon ZG, Gage DJ. 2006. Resource exchange in the rhizosphere: molecular tools and the microbial perspective. Annu Rev Ecol Evol Syst 37:459–88.

    Article  Google Scholar 

  • Chen J, Luo Y, Li J, Zhou X, Cao J, Wang RW, Wang Y, Shelton S, Jin Z, Walker LM. 2016a. Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Glob Chang Biol. doi:10.1111/gcb.13402.

    Google Scholar 

  • Chen J, Luo Y, Xia J, Jiang L, Zhou X, Lu M, Liang J, Shi Z, Shelton S, Cao J. 2015a. Stronger warming effects on microbial abundances in colder regions. Sci Rep. doi:10.1038/srep18032.

    Google Scholar 

  • Chen J, Luo Y, Xia J, Shi Z, Jiang L, Niu S, Zhou X, Cao J. 2016b. Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agric For Meteorol 220:21–9.

    Article  Google Scholar 

  • Chen J, Shi W, Cao J. 2015b. Effects of grazing on ecosystem CO2 exchange in a meadow grassland on the tibetan plateau during the growing season. Environ Manag 55:347–59.

    Article  Google Scholar 

  • Chen J, Zhou X, Wang J, Hruska T, Shi W, Cao J, Zhang B, Xu G, Chen Y, Luo Y. 2016c. Grazing exclusion reduced soil respiration but increased its temperature sensitivity in a Meadow Grassland on the Tibetan Plateau. Ecol Evol 6:675–87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Creamer CA, de Menezes AB, Krull ES, Sanderman J, Newton-Walters R, Farrell M. 2015. Microbial community structure mediates response of soil C decomposition to litter addition and warming. Soil Biol Biochem 80:175–88.

    Article  CAS  Google Scholar 

  • Davidson E, Belk E, Boone RD. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Chang Biol 4:217–27.

    Article  Google Scholar 

  • Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–73.

    Article  CAS  PubMed  Google Scholar 

  • De Frenne P, De Schrijver A, Graae BJ, Gruwez R, Tack W, Vandelook F, Hermy M, Verheyen K. 2010. The use of open-top chambers in forests for evaluating warming effects on herbaceous understorey plants. Ecol Res 25:163–71.

    Article  Google Scholar 

  • Dieleman CM, Branfireun BA, McLaughlin JW, Lindo Z. 2015. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. Glob Chang Biol 21:388–95.

    Article  PubMed  Google Scholar 

  • Dorji T, Totland Ø, Moe SR, Hopping KA, Pan J, Klein JA. 2013. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Glob Chang Biol 19:459–72.

    Article  PubMed  Google Scholar 

  • Dorrepaal E, Toet S, van Logtestijn RS, Swart E, van de Weg MJ, Callaghan TV, Aerts R. 2009. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–19.

    Article  CAS  Google Scholar 

  • Fang H, Cheng S, Yu G, Zheng J, Zhang P, Xu M, Li Y, Yang X. 2012. Responses of CO2 efflux from an alpine meadow soil on the Qinghai Tibetan Plateau to multi-form and low-level N addition. Plant Soil 351:177–90.

    Article  CAS  Google Scholar 

  • Field C, Dise N, Payne R, Britton A, Emmett B, Helliwell R, Hughes S, Jones L, Lees S, Leake J, Leith I, Phoenix G, Power S, Sheppard L, Southon G, Stevens C, Caporn SM. 2014. The role of nitrogen deposition in widespread plant community change across semi-natural habitats. Ecosystems 17:864–77.

    Article  CAS  Google Scholar 

  • Fornara D, Tilman D. 2008. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–22.

    Article  CAS  Google Scholar 

  • Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, Knutti R. 2014. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J Clim 27:511–26.

    Article  Google Scholar 

  • Ganjurjav H, Gao Q, Gornish ES, Schwartz MW, Liang Y, Cao X, Zhang W, Zhang Y, Li W, Wan Y. 2016. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau. Agric For Meteorol 223:233–40.

    Article  Google Scholar 

  • Ganjurjav H, Gao Q, Zhang W, Liang Y, Li Y, Cao X, Wan Y, Li Y, Danjiu L. 2015. Effects of warming on Co2 fluxes in an alpine Meadow ecosystem on the Central Qinghai-Tibetan Plateau. Plos One 10:e0132044.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giardina CP, Litton CM, Crow SE, Asner GP. 2014. Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nat Clim Chang 4:822–7.

    Article  CAS  Google Scholar 

  • Heimann M, Reichstein M. 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–92.

    Article  CAS  PubMed  Google Scholar 

  • Hook P, Burke I. 1995. Evaluation of methods for estimating net nitrogen mineralization in a semiarid grassland. Soil Sci Soc Am J 59:831–7.

    Article  CAS  Google Scholar 

  • Hu R, X-p Wang, Y-x Pan, Y-f Zhang, Zhang H, Chen N. 2015. Seasonal variation of net N mineralization under different biological soil crusts in Tengger Desert, North China. Catena 127:9–16.

    Article  CAS  Google Scholar 

  • Jiang C, Yu G, Fang H, Cao G, Li Y. 2010. Short-term effect of increasing nitrogen deposition on CO 2, CH 4 and N 2 O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmos Environ 44:2920–6.

    Article  CAS  Google Scholar 

  • Kardol P, Campany CE, Souza L, Norby RJ, Weltzin JF, Classen AT. 2010. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem. Glob Chang Biol 16:2676–87.

    Article  Google Scholar 

  • Keenan TF, Gray J, Friedl MA, Toomey M, Bohrer G, Hollinger DY, Munger JW, O’Keefe J, Schmid HP, Wing IS. 2014. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat Clim Chang 4:598–604.

    Article  CAS  Google Scholar 

  • Klein JA, Harte J, Zhao X-Q. 2004. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7:1170–9.

    Article  Google Scholar 

  • Klein JA, Harte J, Zhao X-Q. 2007. Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecol Appl 17:541–57.

    Article  PubMed  Google Scholar 

  • Lee TD, Reich PB, Tjoelker MG. 2003. Legume presence increases photosynthesis and N concentrations of co-occurring non-fixers but does not modulate their responsiveness to carbon dioxide enrichment. Oecologia 137:22–31.

    Article  PubMed  Google Scholar 

  • Lempereur M, Martin-StPaul NK, Damesin C, Joffre R, Ourcival JM, Rocheteau A, Rambal S. 2015. Growth duration is a better predictor of stem increment than carbon supply in a Mediterranean oak forest: implications for assessing forest productivity under climate change. New Phytol 207:579–90.

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xia J, Wan S. 2010. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytol 188:187–98.

    Article  PubMed  Google Scholar 

  • Liu X, Chen B. 2000. Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–42.

    Article  Google Scholar 

  • Lloyd J, Taylor J. 1994. On the temperature dependence of soil respiration. Funct Ecol 8:315–23.

    Article  Google Scholar 

  • Luo Y, Melillo J, Niu S, Beier C, Clark JS, Classen AT, Davidson E, Dukes JS, Evans R, Field CB. 2011. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change. Glob Chang Biol 17:843–54.

    Article  Google Scholar 

  • Marion G, Henry G, Freckman D, Johnstone J, Jones G, Jones M, Levesque E, Molau U, Mølgaard P, Parsons A. 1997. Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Chang Biol 3:20–32.

    Article  Google Scholar 

  • Menge DN, Wolf AA, Funk JL. 2015. Diversity of nitrogen fixation strategies in Mediterranean legumes. Nat Plant 1:15064. doi:10.1038/nplants.2015.64.

    Article  CAS  Google Scholar 

  • Niu S, Sherry RA, Zhou X, Luo Y. 2013. Ecosystem carbon fluxes in response to warming and clipping in a tallgrass prairie. Ecosystems 16:948–61.

    Article  CAS  Google Scholar 

  • Ponce-Campos GE, Moran MS, Huete A, Zhang Y, Bresloff C, Huxman TE, Eamus D, Bosch DD, Buda AR, Gunter SA. 2013. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494:349–52.

    Article  CAS  PubMed  Google Scholar 

  • Poyatos R, Heinemeyer A, Ineson P, Evans JG, Ward HC, Huntley B, Baxter R. 2014. Environmental and vegetation drivers of seasonal CO2 fluxes in a Sub-arctic Forest-Mire Ecotone. Ecosystems 17:377–93.

    Article  CAS  Google Scholar 

  • Richardson AD, Black TA, Ciais P, Delbart N, Friedl MA, Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luyssaert S. 2010. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philoso Trans R Soc Lond B Biol Sci 365:3227–46.

    Article  Google Scholar 

  • Schimel DS. 1995. Terrestrial ecosystems and the carbon-cycle. Glob Chang Biol 1:77–91.

    Article  Google Scholar 

  • Shan Y, Chen D, Guan X, Zheng S, Chen H, Wang M, Bai Y. 2011. Seasonally dependent impacts of grazing on soil nitrogen mineralization and linkages to ecosystem functioning in Inner Mongolia grassland. Soil Biol Biochem 43:1943–54.

    Article  CAS  Google Scholar 

  • Shi C, Silva LC, Zhang H, Zheng Q, Xiao B, Wu N, Sun G. 2015. Climate warming alters nitrogen dynamics and total non-structural carbohydrate accumulations of perennial herbs of distinctive functional groups during the plant senescence in autumn in an alpine meadow of the Tibetan Plateau, China. Agric For Meteorol 200:21–9.

    Article  Google Scholar 

  • Shibata H, Hasegawa Y, Watanabe T, Fukuzawa K. 2013. Impact of snowpack decrease on net nitrogen mineralization and nitrification in forest soil of northern Japan. Biogeochemistry 116:69–82.

    Article  CAS  Google Scholar 

  • Smith MD, Knapp AK, Collins SL. 2009. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90:3279–89.

    Article  PubMed  Google Scholar 

  • Stocker TF. 2014. Climate change 2013: the physical science basis: working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change: Cambridge University Press.

  • Su H, Feng J, Axmacher JC, Sang W. 2015. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China. Sci Rep 5:9115. doi:10.1038/srep09115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun S, Peng L, Wang G, Wu Y, Zhou J, Bing H, Yu D, Luo J. 2013. An improved open-top chamber warming system for global change research. Silva Fenn 47:960. doi:10.14214/sf.960.

    Article  Google Scholar 

  • Suzuki RO. 2014. Combined effects of warming, snowmelt timing, and soil disturbance on vegetative development in a grassland community. Plant Ecol 215:1399–408.

    Article  Google Scholar 

  • Thompson LG, Yao T, Mosley-Thompson E, Davis M, Henderson K, Lin P-N. 2000. A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science 289:1916–19.

    Article  CAS  PubMed  Google Scholar 

  • Väisänen M, Ylänne H, Kaarlejärvi E, Sjögersten S, Olofsson J, Crout N, Stark S. 2014. Consequences of warming on tundra carbon balance determined by reindeer grazing history. Nat Clim Chang 4:384–8.

    Article  Google Scholar 

  • Verheijen LM, Aerts R, Brovkin V, Cavender-Bares J, Cornelissen JH, Kattge J, Bodegom PM. 2015. Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Glob Chang Biol 21:3074–86.

    Article  PubMed  Google Scholar 

  • Walker MD, Wahren CH, Hollister RD, Henry GH, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB. 2006. Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci U S A 103:1342–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan S, Hui D, Wallace L, Luo Y. 2005. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Glob Biogeochem Cycles. doi:10.1029/2004GB002315.

    Google Scholar 

  • Wang S, Duan J, Xu G, Wang Y, Zhang Z, Rui Y, Luo C, Xu B, Zhu X, Chang X. 2012. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology 93:2365–76.

    Article  PubMed  Google Scholar 

  • Ward SE, Ostle NJ, Oakley S, Quirk H, Henrys PA, Bardgett RD. 2013. Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecol Lett 16:1285–93.

    Article  PubMed  Google Scholar 

  • Way DA, Oren R. 2010. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30:669–88.

    Article  PubMed  Google Scholar 

  • Whittington HR, Tilman D, Powers JS. 2013. Consequences of elevated temperatures on legume biomass and nitrogen cycling in a field warming and biodiversity experiment in a North American prairie. Funct Plant Biol 40:1147–58.

    Article  CAS  Google Scholar 

  • Wilcox KR, Fischer JC, Muscha JM, Petersen MK, Knapp AK. 2015. Contrasting above-and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes. Glob Chang Biol 21:335–44.

    Article  PubMed  Google Scholar 

  • Wood TE, Cavaleri MA, Reed SC. 2012. Tropical forest carbon balance in a warmer world: a critical review spanning microbial-to ecosystem-scale processes. Biol Rev 87:912–27.

    Article  PubMed  Google Scholar 

  • Xu X, Shi Z, Li D, Zhou X, Sherry RA, Luo Y. 2015. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming. Glob Chang Biol 21:3846–53.

    Article  PubMed  Google Scholar 

  • Xu Z, Gong T, Li J. 2008. Decadal trend of climate in the Tibetan Plateau—regional temperature and precipitation. Hydrol Process 22:3056–65.

    Article  Google Scholar 

  • Yang Y, Wang G, Klanderud K, Wang J, Liu G. 2014. Plant community responses to five years of simulated climate warming in an alpine fen of the Qinghai-Tibetan Plateau. Plant Ecol Divers 8:211–18.

    Article  Google Scholar 

  • Zhang N, Xia J, Yu X, Ma K, Wan S. 2011. Soil microbial community changes and their linkages with ecosystem carbon exchange under asymmetrically diurnal warming. Soil Biol Biochem 43:2053–9.

    Article  CAS  Google Scholar 

  • Zhang SY, Li XY, Ma YJ, Zhao GQ, Li L, Chen J, Jiang ZY, Huang YM. 2014. Interannual and seasonal variability in evapotranspiration and energy partitioning over the alpine riparian shrub Myricaria squamosa Desv. on Qinghai-Tibet Plateau. Cold Reg Sci Technol 102:8–20.

    Article  Google Scholar 

  • Zhou L, Yin S, An S, Yang W, Deng Q, Xie D, Ji H, Ouyang Y, Cheng X. 2015. Spartina alterniflora invasion alters carbon exchange and soil organic carbon in eastern salt marsh of China. Clean Soil Air Water 43:569–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Science & Technology (2012BAH31B03), and the State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment of Chinese Academy of Sciences (SKLLQG1303). Contributions from Dr. Luo’s Eco-lab to this study was financially supported by US Department of Energy, Terrestrial Ecosystem Sciences Grant DE SC0008270 and US National Science Foundation (NSF) Grant DBI 0850290, EPS0919466, DEB 0743778, DEB 0840964, and EF 1137293. The authors gratefully acknowledge financial support from China Scholarship Council (award for a 1-year study abroad at the University of Oklahoma).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junji Cao, Xuhui Zhou or Rui-Wu Wang.

Additional information

Author contributions

Ji Chen, Junji Cao, Xuhui Zhou, and Rujin Huang conceived and designed the study. Ji Chen, Feng Wu, Tafeng Hu, Junyi Liang, and Zheng Shi performed research. Jianyang Xia, Lifen Jiang, Shuli Niu, Kevin R. Wilcox, and Jianfen Guo analyzed the data. Jianyang Xia, Shuli Niu, and Rui-Wu Wang contributed new methods or models.

Ji Chen, Kevin R. Wilcox, and Katerina Y. Estera wrote the paper.

Our original data set can be found at https://www.researchgate.net/publication/305437349_Warming_effects_on_ecosystem_carbon_fluxes_are_modulated_by_plant_functional_types.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Luo, Y., Xia, J. et al. Warming Effects on Ecosystem Carbon Fluxes Are Modulated by Plant Functional Types. Ecosystems 20, 515–526 (2017). https://doi.org/10.1007/s10021-016-0035-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-016-0035-6

Keywords

Navigation