Skip to main content

Advertisement

Log in

Biogenic volatile organic compound emissions in four vegetation types in high arctic Greenland

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Biogenic volatile organic compounds (BVOCs) emitted from terrestrial vegetation participate in oxidative reactions in the atmosphere, leading to the formation of secondary organic aerosols and longer lifetime of methane. Global models of BVOC emissions have assumed minimal emissions from the high latitudes. However, measurements from this region are lacking, and studies from the high arctic are yet to be published. This study aimed to obtain estimates for BVOC emissions from the high arctic, and hereby to add new knowledge to the understanding of global BVOC emissions. Measurements were conducted in four vegetation types dominated by Cassiope tetragona, Salix arctica, Vaccinium uliginosum and a mixture of Kobresia myosuroides, Dryas spp. and Poa arctica. Emissions were measured by an enclosure technique and collection of volatiles into adsorbent cartridges in August. Volatiles were analyzed by gas chromatography–mass spectrometry following thermal desorption. Isoprene showed highest emissions in S. arctica heath. Monoterpene and sesquiterpene emissions were especially associated with C. tetragona heath. Total observed emissions were comparable in magnitude to emissions previously found in the subarctic, whereas isoprene emissions were lower. This study shows that considerable amounts of BVOCs are emitted from the high arctic. The results are also of importance as the emissions from this region are expected to increase in the future as a result of the predicted climate warming in the high arctic. We suggest further studies to assess the effects of climate changes in the region in order to gain new knowledge and understanding of future global BVOC emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aaltonen H, Pumpanen J, Pihlatie M, Hakola H, Hellén H, Kulmala L, Vesala T, Bäck J (2011) Boreal pine forest floor biogenic volatile organic compound emissions peak in early summer and autumn. Agric For Meteorol 151(6):682–691. doi:10.1016/j.agrformet.2010.12.010

    Article  Google Scholar 

  • ACIA (2005) Impacts of a warming arctic: arctic climate impact assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Arndal MF, Illeris L, Michelsen A, Albert K, Tamstorf M, Hansen BU (2009) Seasonal variation in gross ecosystem production, plant biomass, and carbon and nitrogen pools in five high arctic vegetation types. Arct Antarct Alp Res 41(2):164–173. doi:10.1657/1938-4246-41.2.164

    Article  Google Scholar 

  • Arneth A, Schurgers G, Hickler T, Miller PA (2008) Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests. Plant Biol 10(1):150–162. doi:10.1055/s-2007-965247

    Article  CAS  PubMed  Google Scholar 

  • Ashworth K, Boissard C, Folberth G, Latière J, Schurgers G (2013) Global modelling of volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree Physiology 5. Springer, Berlin, pp 451–487

    Chapter  Google Scholar 

  • Bäckstrand K, Crill PM, Mastepanov M, Christensen TR, Bastviken D (2008) Non-methane volatile organic compound flux from a subarctic mire in Northern Sweden. Tellus B 60(2):226–237. doi:10.1111/j.1600-0889.2007.00331.x

    Article  Google Scholar 

  • Bäckstrand K, Crill PM, Jackowicz-Korczynski M, Mastepanov M, Christensen TR, Bastviken D (2010) Annual carbon gas budget for a subarctic peatland, Northern Sweden. Biogeosciences 7(1):95–108

    Article  Google Scholar 

  • Bay C (1998) Vegetation mapping of Zackenberg valley, Northeast Greenland. Danish Polar Center and Botanical Museum, University of Copenhagen

  • Blande JD, Tiiva P, Oksanen E, Holopainen JK (2007) Emission of herbivore-induced volatile terpenoids from two hybrid aspen (Populus tremula × tremuloides) clones under ambient and elevated ozone concentrations in the field. Glob Change Biol 13:2538–2550

    Article  Google Scholar 

  • Böcher TW, Holmen K, Jakobsen K (1968) The flora of Greenland. P Haase & Son, Copenhagen

    Google Scholar 

  • Brilli F, Ciccioli P, Frattoni M, Prestininzi M, Spanedda AF, Loreto F (2009) Constitutive and herbivore-induced monoterpenes emitted by Populus × euroamericana leaves are key volatiles that orient Chrysomela populi beetles. Plant Cell Environ 32:542–552

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15(3):167–175. doi:10.1016/j.tplants.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  • Duhl TR, Helmig D, Guenther A (2008) Sesquiterpene emissions from vegetation: a review. Biogeosciences 5(3):761–777

    Article  CAS  Google Scholar 

  • Ekberg A, Arneth A, Hakola H, Hayward S, Holst T (2009) Isoprene emission from wetland sedges. Biogeosciences 6(4):601–613

    Article  CAS  Google Scholar 

  • Ekberg A, Arneth A, Holst T (2011) Isoprene emission from Sphagnum species occupying different growth positions above the water table. Boreal Environ Res 16(1):47–59

    CAS  Google Scholar 

  • Elberling B, Tamstorf MP, Michelsen A, Arndal MF, Sigsgaard C, Illeris L, Bay C, Hansen BU, Christensen TR, Hansen ES, Jakobsen BH, Beyens L (2008) Soil and plant community-characteristics and dynamics at Zackenberg. In: Meltofte H, Christensen TR, Elberling B, Forchhammer MC, Rasch M (eds) High-arctic ecosystem dynamics in a changing climate, vol 40., Advances in ecological researchAcademic Press, London, pp 223–248

    Chapter  Google Scholar 

  • Ellebjerg SM, Tamstorf MP, Illeris L, Michelsen A, Hansen BU (2008) Inter-annual variability and controls of plant phenology and productivity at Zackenberg. In: Meltofte H, Christensen TR, Elberling B, Forchhammer MC, Rasch M (eds) High-arctic ecosystem dynamics in a changing climate, vol 40., Advances in ecological researchAcademic Press, London, pp 249–273

    Chapter  Google Scholar 

  • Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Bjorkman AD, Callaghan TV, Collier LS, Cooper EJ, Cornelissen JHC, Day TA, Fosaa AM, Gould WA, Grétarsdóttir J, Harte J, Hermanutz L, Hik DS, Hofgaard A, Jarrad F, Jónsdóttir IS, Keuper F, Klanderud K, Klein JA, Koh S, Kudo G, Lang S, Loewen V, May JL, Mercado J, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Pieper S, Post E, Rixen C, Robinson CH, Schmidt NM, Shaver GR, Stenström A, Tolvanen A, Totland Ø, Troxler T, Wahren CH, Webber PJ, Welker JM, Wookey PA (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–175

    Article  PubMed  Google Scholar 

  • Fares S, Mahmood T, Liu S, Loreto F, Centritto M (2011) Influence of growth temperature and measuring temperature on isoprene emission, diffusive limitations of photosynthesis and respiration in hybrid poplars. Atmos Environ 45:155–161

    Article  CAS  Google Scholar 

  • Faubert P, Tiiva P, Rinnan Å, Michelsen A, Holopainen JK, Rinnan R (2010a) Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming. New Phytol 187:199–208. doi:10.1111/j.1469-8137.2010.03270.x

    Article  CAS  PubMed  Google Scholar 

  • Faubert P, Tiiva P, Rinnan Å, Räty S, Holopainen JK, Holopainen T, Rinnan R (2010b) Effect of vegetation removal and water table drawdown on the non-methane biogenic volatile organic compound emissions in boreal peatland microcosms. Atmos Environ 44:4432–4439

    Article  CAS  Google Scholar 

  • Faubert P, Tiiva P, Michelsen A, Rinnan Å, Ro-Poulsen H, Rinnan R (2012) The shift in plant species composition in a subarctic mountain birch forest floor due to climate change would modify the biogenic volatile organic compound emission profile. Plant Soil 352:199–215. doi:10.1007/s11104-011-0989-2

    Article  CAS  Google Scholar 

  • Fineschi S, Loreto F, Staudt M, Peñuelas J (2013) Diversification of volatile isoprenoid emissions from trees: evolutionary and ecological perspectives. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree Physiology 5. Springer, Berlin, pp 1–20

    Chapter  Google Scholar 

  • Fowler D, Amann M, Anderson R, Ashmore M, Deplegde MH, Derwent D, Grennfelt P, Hewitt CN, Hov O, Jenkin M, et al (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. Policy document 15/08. Royal Society, London

  • Fuentes JD, Gu L, Lerdau M, Atkinson R, Baldocchi D, Bottenheim JW, Ciccioli P, Lamb B, Geron C, Guenther A, Sharkey TD, Stockwell W (2000) Biogenic hydrocarbons in the atmospheric boundary layer: a review. B Am Meteorol Soc 81(7):1537–1575. doi:10.1175/1520-0477(2000)0812.3.CO;2

    Article  Google Scholar 

  • Geron C, Guenther A, Greenberg J, Karl T, Rasmussen R (2006) Biogenic volatile organic compound emissions from desert vegetation of the southwestern US. Atmos Environ 40:1645–1660

    Article  CAS  Google Scholar 

  • Grote R, Monson RK, Niinemets Ü (2013) Leaf-level models of constitutive and stress-driven volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree Physiology 5. Springer, Berlin, pp 315–355

    Chapter  Google Scholar 

  • Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J Geophys Res 98:12609–12617. doi:10.1029/93JD00527

    Article  Google Scholar 

  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res Atmos 100(D5):8873–8892

    Article  CAS  Google Scholar 

  • Hakola H, Rinne J, Laurila T (1998) The hydrocarbon emission rates of tea-leafed willow (Salix phylicifolia), silver birth (Betula pendula) and European aspen (Populus tremula). Atmos Environ 32(10):1825–1833

    Article  CAS  Google Scholar 

  • Hansen BU, Sigsgaard C, Rasmussen L, Cappelen J, Hinkler J, Mernild SH, Petersen D, Tamstorf MP, Rasch M, Hasholt B (2008) Present-day climate at Zackenberg. In: Meltofte H, Christensen TR, Elberling B, Forchhammer MC, Rasch M (eds) High-Arctic ecosystem dynamics in a changing climate—ten years of monitoring and research at Zackenberg Research Station, Northeast Greenland, vol 40., Advances in ecological researchAcademic Press, London, pp 249–273

    Google Scholar 

  • Harrison SP, Morfopoulos C, Dani KGS, Prentice IC, Arneth A, Atwell BJ, Barkley MP, Leishman M, Loreto F, Medlyn BE, Niinemets Ü, Possell M, Peñuelas J, Wright IJ (2013) Volatile isoprenoid emissions from plastid to planet. New Phytol 197:49–57. doi:10.1111/nph.12021

    Article  CAS  PubMed  Google Scholar 

  • Holst T, Arneth A, Hayward S, Ekberg A, Mastepanov M, Jackowicz-Korczynski M, Friborg T, Crill PM, Backstrand K (2010) BVOC ecosystem flux measurements at a high latitude wetland site. Atmos Chem Phys 10(4):1617–1634

    Article  CAS  Google Scholar 

  • Insam H, Seewald M (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213. doi:10.1007/s00374-010-0442-3

    Article  CAS  Google Scholar 

  • Jardine K, Abrell L, Kure SA, Huxman T, Ortega J, Guenther A (2010) Volatile organic compound emissions from Larrea tridentata (creosotebush). Atmos Chem Phys 10:12191–12206d

    Article  CAS  Google Scholar 

  • Jonasson S (1988) Evaluation of the point intercept method for the estimation of plant biomass. Oikos 52(1):101–106. doi:10.2307/3565988

    Article  Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33(1):23–88

    Article  CAS  Google Scholar 

  • Klinger LF, Li QJ, Guenther AB, Greenberg JP, Baker B, Bai JH (2002) Assessment of volatile organic compound emissions from ecosystems of China. J Geophys Res Atmos 107(D21):ACH16-1–ARH 16-21

  • Körner C, Paulsen J, Pelaez-Riedl S (2003) A Bioclimatic characterisation of Europe’s alpine areas. In: Nagy L, Grabherr G, Körner C, Thompson DA (eds) Alpine biodiversity in Europe, vol 167, ecological studies. Springer, Berlin, pp 13–28. doi:10.1007/978-3-642-18967-8_2

    Chapter  Google Scholar 

  • Kulmala M, Nieminen T, Chellapermal R, Makkonen R, Bäck J, Kerminen VM (2013) Climate feedbacks linking the increasing atmospheric CO2 concentration, BVOC emissions, aerosols and clouds in forest ecosystems. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree Physiology 5. Springer, Berlin, pp 489–508

    Chapter  Google Scholar 

  • Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the Earth system. New Phytol 183(1):27–51. doi:10.1111/j.1469-8137.2009.02859.x

    Article  CAS  PubMed  Google Scholar 

  • Lathière J, Hauglustaine DA, De Noblet-Ducoudré N, Krinner G, Folberth GA (2005) Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model. Geophys Res Lett 32:L20818

    Article  Google Scholar 

  • Leff JW, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40(7):1629–1636. doi:10.1016/j.soilbio.2008.01.018

    Article  CAS  Google Scholar 

  • Li Z, Sharkey TD (2013) Molecular and pathway controls on biogenic volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree Physiology 5. Springer, Berlin, pp 119–150

    Chapter  Google Scholar 

  • Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15(3):154–166

    Article  CAS  PubMed  Google Scholar 

  • Meltofte H, Rasch M (2008) The study area at Zackenberg. In: Meltofte H, Christensen TR, Elberling B, Forchhammer MC, Rasch M (eds) High-Arctic ecosystem dynamics in a changing climate—ten years of monitoring and research at Zackenberg Research Station, Northeast Greenland, vol 40., Advances in ecological researchAcademic Press, London, pp 101–110

    Chapter  Google Scholar 

  • Meltofte H, Thing H (eds) (1996) Zackenberg ecological research operations, 1st Annual Report, 1995. Danish Polar Center, Ministry of Research and Technology, Copenhagen

  • Monson RK (2013) Metabolic and gene expression controls on the production of biogenic volatile organic compounds. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree Physiology 5. Springer, Berlin, pp 153–180

    Chapter  Google Scholar 

  • Ortega J, Helmig D (2008) Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques—part A. Chemosphere 72(3):343–364

    Article  CAS  PubMed  Google Scholar 

  • Peñuelas J, Llusià J (2001) The complexity of factors driving volatile organic compound emissions by plants. Biol Plantarum 44(4):481–487

    Article  Google Scholar 

  • Possell M, Loreto F (2013) The role of volatile organic compounds in plant resistance to abiotic stresses: Responses and mechanisms. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree Physiology 5. Springer, Berlin, pp 209–235

    Chapter  Google Scholar 

  • Potosnak MJ, Baker BM, LeStourgeon L, Disher SM, Griffin KL, Bret-Harte MS, Starr G (2013) Isoprene emissions from a tundra ecosystem. Biogeosciences 10(2):871–889. doi:10.5194/bg-10-871-2013

    Article  Google Scholar 

  • Rinnan R, Rinnan A, Faubert P, Tiiva P, Holopainen JK, Michelsen A (2011) Few long-term effects of simulated climate change on volatile organic compound emissions and leaf chemistry of three subarctic dwarf shrubs. Environ Exp Bot 72(3):377–386. doi:10.1016/j.envexpbot.2010.11.006

    Article  CAS  Google Scholar 

  • Rinnan R, Gierth D, Bilde M, Rosenørn T, Michelsen A (2013) Off-season biogenic volatile organic compound emissions from heath mesocosms: responses to vegetation cutting. Front Microbiol 4:224. doi:10.3389/fmicb.2013.00224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rinne J, Bäck J, Hakola H (2009) Biogenic volatile organic compound emissions from the Eurasian taiga: current knowledge and future directions. Boreal Environ Res 14(4):807–826

    CAS  Google Scholar 

  • Sanadze GA (2004) Biogenic isoprene (a review). Russ J Plant Physiol 51(6):729–741

    Article  CAS  Google Scholar 

  • Scherrer D, Körner C (2009) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob Change Biol. doi:10.1111/j.1365-2486.2009.02122.x

    Google Scholar 

  • Schmidt NM, Kristensen DK, Michelsen A, Bay C (2012) High arctic plant community responses to a decade of ambient warming. Biodiversity 13(3–4):191–199

    Article  Google Scholar 

  • Sharkey T, Loreto F (1993) Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95(3):328–333. doi:10.1007/BF00320984

    Article  Google Scholar 

  • Sharkey TD, Wiberley AE, Donohue AR (2008) Isoprene emission from plants: why and how. Ann Bot-London 101:5–18. doi:10.1093/aob/mcm240

    Article  CAS  Google Scholar 

  • Sigsgaard C, Thorsøe K, Lund M, Kandrup N, Larsen M, Falk JM, Hansen BU, Ström L, Christensen TR, Tamstorf MP (2010) Zackenberg basic. The ClimateBasis and GeoBasis programmes. In: Jensen LM, Rasch M (eds) Zackenberg ecological research operations, 15th annual report, 2009. National Environmental Research Institute, Aarhus University, Denmark, pp 12–35

  • Smolander A, Ketola RA, Kotiaho T, Kanerva S, Suominen K, Kitunen V (2006) Volatile monoterpenes in soil atmosphere under birch and conifers: effects on soil N transformations. Soil Biol Biochem 38:3436–3442

    Article  CAS  Google Scholar 

  • Staudt M, Bertin N, Frenzel B, Seufert G (2000) Seasonal variation in amount and composition of monoterpenes emitted by young pinus pinea trees—implications for emission modeling. J Atmos Chem 35(1):77–99. doi:10.1023/A:1006233010748

    Article  CAS  Google Scholar 

  • Svoboda J (2009) Evolution of plant cold hardiness and its manifestation along the latitudinal gradient in the Canadian arctic. In: Gusta L, Wisniewski M, Tanino K (eds) Plant cold hardiness: from the laboratory to the field. CABI, Cambridge, MA, pp 140–162

    Chapter  Google Scholar 

  • Tiiva P, Rinnan R, Faubert P, Rasanen J, Holopainen T, Kyro E, Holopainen JK (2007) Isoprene emission from a subarctic peatland under enhanced UV-B radiation. New Phytol 176:346–355. doi:10.1111/j.1469-8137.2007.02164.x

    Article  CAS  PubMed  Google Scholar 

  • Tiiva P, Faubert P, Michelsen A, Holopainen T, Holopainen JK, Rinnan R (2008) Climatic warming increases isoprene emission from a subarctic heath. New Phytol 180(4):853–863. doi:10.1111/j.1469-8137.2008.02587.x

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Sharkey TD, Loreto F (2012) Stabilization of thylakoid membranes in isoprene-emitting plants reduces formation of reactive oxygen species. Plant Signal Behav 7(1):139–141. doi:10.4161/psb.7.1.18521

    Article  PubMed Central  PubMed  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5(5):283–291

    Article  CAS  PubMed  Google Scholar 

  • Walker DA, Raynolds MK, Daniëls FJA, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES, Moskalenko NG, Talbot SS, Yurtsev BA, Members of the CAVM team (2005) The circumpolar arctic vegetation map. J Veg Sci 16:267–282

    Article  Google Scholar 

  • Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Lee Turner P, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. PNAS 103(5):1342–1346

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by The Danish Council for Independent Research | Natural Sciences and the Villum Foundation. We are grateful to the Zackenberg Research Station for provision of meteorological data and logistic support. Also thanks to the Danish National Research Foundation for supporting activities (DNRF100) within the Center for Permafrost (CENPERM), University of Copenhagen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Schollert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 157 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schollert, M., Burchard, S., Faubert, P. et al. Biogenic volatile organic compound emissions in four vegetation types in high arctic Greenland. Polar Biol 37, 237–249 (2014). https://doi.org/10.1007/s00300-013-1427-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-013-1427-0

Keywords

Navigation