Skip to main content

Emissions from the Mediterranean Vegetation

  • Chapter
  • First Online:
Atmospheric Chemistry in the Mediterranean Region

Abstract

The vegetation is a source of various compounds in the gas phase and particulate phase (“bioaerosols”). Global emissions of volatile organic compounds (VOCs) are largely dominated by biogenic sources. Due to the high vegetation biodiversity and favorable climatic conditions, the Mediterranean area has been identified as a huge potential source of biogenic VOCs (BVOCs), which are precursors of tropospheric ozone and secondary organic aerosols. Therefore, this chapter is mainly dedicated to BVOCs although emissions of bioaerosols are briefly reviewed. First, we present shortly the processes leading to BVOC emissions by terrestrial vegetation. Then we focus on BVOC speciation, emissions, and fluxes, from the branch to the canopy level and larger scales. A review of emissions from typical Mediterranean plant species follows, as well as a synthesis of the mean BVOC fluxes measured by micrometeorological techniques in the Mediterranean area. Factors controlling BVOCs and their evolution in the Mediterranean context are then examined from a modelling perspective. Finally, we present a brief overview of measurements and studies of bioaerosols (pollens, fungal spores, etc.) in the Mediterranean basin.

Chapter reviewed by Silvano Fares (Institute of Bioeconomy, CNR, Rome, Italy), as part of the book Part V Emissions and Sources also reviewed by Claire Granier (Laboratoire d’Aérologie (LAERO), CNRS – Univ. Toulouse III Paul Sabatier, Observatoire Midi-Pyrénées, Toulouse, France)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Dieyeh, M. H., Barham, R., Abu-Elteen, K., Al-Rashidi, R., & Shaheen, I. (2010). Seasonal variation of fungal spore populations in the atmosphere of Zarqa area, Jordan. Aerobiologia, 26, 263–276. https://doi.org/10.1007/s10453-010-9162-2

    Article  Google Scholar 

  • Aguilera, F., Dhiab, A. B., Msallem, M., Orlandi, F., Bonofiglio, T., Ruiz-Valenzuela, L., Galán, C., Díaz-de la Guardia, C., Giannelli, A., & del Mar Trigo, M. (2015). Airborne-pollen maps for olive-growing areas throughout the Mediterranean region: Spatio-temporal interpretation. Aerobiologia, 31, 421–434. https://doi.org/10.1007/s10453-015-9375-5

    Article  Google Scholar 

  • Asensio, D., Peñuelas, J., Ogaya, R., & Llusià, J. (2007). Seasonal soil VOC exchange rates in a Mediterranean holm oak forest and their responses to drought conditions. Atmospheric Environment, 41, 2456–2466. https://doi.org/10.1016/j.atmosenv.2006.05.007

    Article  CAS  Google Scholar 

  • Asensio, D., Owen, S. M., Llusià, J., & Peñuelas, J. (2008). The distribution of volatile isoprenoids in the soil horizons around Pinus halepensis trees. Soil Biology and Biochemistry, 40, 2937–2947. https://doi.org/10.1016/j.soilbio.2008.08.008

    Article  CAS  Google Scholar 

  • Ashworth, K., Boissard, C., Folberth, G., Lathière, J., & Schurgers, G. (2013). Global modeling of volatile organic compound emissions. In Ü. Niinemets & R. Monson (Eds.), Biology, controls and models of tree volatile organic compound emissions (Tree physiology) (Vol. 5, pp. 451–487). https://doi.org/10.1007/978-94-007-6606-8_16

    Chapter  Google Scholar 

  • Atkinson, R., & Arey, J. (2003). Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmospheric Environment, 37(Suppl. 2), 197–219. https://doi.org/10.1016/S1352-2310(03)00391-1

    Article  CAS  Google Scholar 

  • Baghi, R., Durand, P., Jambert, C., Jarnot, C., Delon, C., Serca, D., Striebig, N., Ferlicoq, M., & Keravec, P. (2012). A new disjunct eddy-covariance system for BVOC flux measurements – Validation on CO2 and H2O fluxes. Atmospheric Measurement Techniques, 5, 3119–3132. https://doi.org/10.5194/amt-5-3119-2012

    Article  CAS  Google Scholar 

  • Baldocchi, D. D., Hincks, B. B., & Meyers, T. P. (1988). Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 69, 1331–1340. https://doi.org/10.2307/1941631

    Article  Google Scholar 

  • Bauwens, M., Stavrakou, T., Müller, J. F., Van Schaeybroeck, B., De Cruz, L., De Troch, R., Giot, O., Hamdi, R., Termonia, P., Laffineur, Q., Amelynck, C., Schoon, N., Heinesch, B., Holst, T., Arneth, A., Ceulemans, R., Sanchez-Lorenzo, A., & Guenther, A. (2018). Recent past (1979–2014) and future (2070–2099) isoprene fluxes over Europe simulated with the MEGAN-MOHYCAN model. Biogeosciences, 15, 3673–3690. https://doi.org/10.5194/bg-15-3673-2018

    Article  CAS  Google Scholar 

  • Belmonte, J., & Vilà, M. (2004). Atmospheric invasion of non-native pollen in the Mediterranean region. American Journal of Botany, 91, 1243–1250. https://doi.org/10.3732/ajb.91.8.1243

    Article  Google Scholar 

  • Bracho-Nunez, A., Welter, S., Staudt, M., & Kesselmeier, J. (2011). Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation. Journal of Geophysical Research, 116, D16304. https://doi.org/10.1029/2010JD015521

    Article  CAS  Google Scholar 

  • Bracho-Nunez, A., Knothe, N. M., Welter, S., Staudt, M., Costa, W. R., Liberato, M. A. R., Piedade, M. T. F., & Kesselmeier, J. (2013). Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants. Biogeosciences, 10, 5855–5873. https://doi.org/10.5194/bg-10-5855-2013

    Article  CAS  Google Scholar 

  • Businger, J. A., & Oncley, S. T. (1990). Flux measurement with conditional sampling. Journal of Atmospheric and Oceanic Technology, 7, 349–352. https://doi.org/10.1175/1520-0426(1990)007<0349:FMWCS>2.0.CO;2

    Article  Google Scholar 

  • Buysse, P., Lafouge, F., Kammer, J., Ciuraru, J., Staudt, M., Bsaibes, S., Truong, F., Gros, V., Piquemal, K., Ourcival, J.-M., Piel, F., & Loubet, B. (2019) Fluxes of biogenic volatile organic compounds in a green oak forest. Geophysical Research Abstracts, 21, EGU2019-8640. https://meetingorganizer.copernicus.org/EGU2019/EGU2019-8640.pdf.

  • Cecchi, L., d’Amato, G., Ayres, J., Galan, C., Forastiere, F., Forsberg, B., Gerritsen, J., Nunes, C., Behrendt, H., & Akdis, C. (2010). Projections of the effects of climate change on allergic asthma: The contribution of aerobiology. Allergy, 65, 1073–1081. https://doi.org/10.1111/j.1398-9995.2010.02423.x

    Article  CAS  Google Scholar 

  • Cerqueira, M. A., Pio, C. A., Gomes, P. A., Matos, J. S., & Nunes, T. V. (2003). Volatile organic compounds in rural atmospheres of central Portugal. Science of the Total Environment, 313, 49–60. https://doi.org/10.1016/S0048-9697(03)00250-X

    Article  CAS  Google Scholar 

  • Ciccioli, P., Brancaleoni, E., Frattoni, M., Di Palo, V., Valentini, R., Tirone, G., Seufert, G., Bertin, N., Hansen, U., Csiky, O., Lenz, R., & Sharma, M. (1999). Emission of reactive terpene compounds from orange orchards and their removal by within-canopy processes. Journal of Geophysical Research, 104, 8077–8094. https://doi.org/10.1029/1998JD100026

    Article  CAS  Google Scholar 

  • Cholakian, A., Beekmann, M., Colette, A., Coll, I., Siour, G., Sciare, J., Marchand, N., Couvidat, F., Pey, J., & Gros, V. (2018). Simulation of fine organic aerosols in the western Mediterranean area during the ChArMEx 2013 summer campaign. Atmospheric Chemistry and Physics, 18, 7287–7312. https://doi.org/10.5194/acp-18-7287-2018

    Article  CAS  Google Scholar 

  • Curci, G., Beekmann, M., Vautard, R., Smiatek, G., Steinbrecher, R., Theloke, J., & Friedrich, R. (2009). Modelling study of the impact of isoprene and terpene biogenic emissions on European ozone levels. Atmospheric Environment, 43, 1444–1455. https://doi.org/10.1016/j.atmosenv.2008.02.070

    Article  CAS  Google Scholar 

  • Dabberdt, W. F., Lenschow, D. H., Horst, T. W., Zimmerman, P. R., Oncley, S. P., & Delany, A. C. (1993). Atmosphere-surface exchange measurements. Science, 260, 1472–1481. https://doi.org/10.1126/science.260.5113.1472

    Article  CAS  Google Scholar 

  • Damialis, A., Halley, J. M., Gioulekas, D., & Vokou, D. (2007). Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmospheric Environment, 41, 7011–7021. https://doi.org/10.1016/j.atmosenv.2007.05.009

    Article  CAS  Google Scholar 

  • Damialis, A., Vokou, D., Gioulekas, D., & Halley, J. M. (2015). Long-term trends in airborne fungal-spore concentrations: A comparison with pollen. Fungal Ecology, 13, 150–156. https://doi.org/10.1016/j.funeco.2014.09.010

    Article  Google Scholar 

  • Darmais, S., Dutaur, L., Larsen, B., Cieslick, S., Luchetta, L., Simon, V., & Torres, L. (2000). Emission flux of VOC by orange trees determined by both eddy accumulation and vertical gradient approaches. Chemosphere, 2, 47–56. https://doi.org/10.1016/S1465-9972(99)00050-1

    Article  CAS  Google Scholar 

  • Davison, B., Taipale, R., Langford, B., Misztal, P., Fares, S., Matteucci, G., Loreto, F., Cape, J. N., Rinne, J., & Hewitt, C. N. (2009). Concentrations and fluxes of biogenic volatile organic compounds above a Mediterranean macchia ecosystem in western Italy. Biogeosciences, 6, 1655–1670. https://doi.org/10.5194/bg-6-1655-2009

    Article  CAS  Google Scholar 

  • Debevec, C., Sauvage, S., Gros, V., Sciare, J., Pikridas, M., Stavroulas, I., Salameh, T., Leonardis, T., Gaudion, V., Depelchin, L., Fronval, I., Sarda-Esteve, R., Baisnée, D., Bonsang, B., Savvides, C., Vrekoussis, M., & Locoge, N. (2017). Origin and variability in volatile organic compounds observed at an Eastern Mediterranean background site (Cyprus). Atmospheric Chemistry and Physics, 17, 11355–11388. https://doi.org/10.5194/acp-17-11355-2017

    Article  CAS  Google Scholar 

  • Debevec, C., Sauvage, S., Gros, V., Salameh, T., Sciare, S., Dulac, F., & Locoge, N. (2021). Seasonal variation and origins of volatile organic compounds observed during two years at a western Mediterranean remote background site (Ersa, Cape Corsica). Atmospheric Chemistry and Physics, 21, 1449–1484. https://doi.org/10.5194/acp-21-1449-2021

  • Delon, C., Druilhet, A., Delmas, R., & Greenberg, J. (2000). Aircraft assessment of trace compound fluxes in the atmosphere with relaxed eddy accumulation: Sensitivity to the conditions of selection. Journal of Geophysical Research: Atmospheres, 105, 20461−20472. https://doi.org/10.1029/2000JD900186

  • Detlef P., van Vuuren Jae, Edmonds Mikiko, Kainuma Keywan, Riahi Allison, Thomson Kathy, Hibbard George C., Hurtt Tom, Kram Volker, Krey Jean-Francois, Lamarque Toshihiko, Masui Malte, Meinshausen Nebojsa, Nakicenovic Steven J., Smith Steven K., Rose (2011) The representative concentration pathways: an overview. Climatic Change 109(1–2), 5–31. https://doi.org/10.1007/s10584-011-0148-z

  • Eerdekens, G., Ganzeveld, L., Vilà-Guerau de Arellano, J., Klüpfel, T., Sinha, V., Yassaa, N., Williams, J., Harder, H., Kubistin, D., Martinez, M., & Lelieveld, J. (2009). Flux estimates of isoprene, methanol and acetone from airborne PTR-MS measurements over the tropical rainforest during the GABRIEL 2005 campaign. Atmospheric Chemistry and Physics, 9, 4207–4227. https://doi.org/10.5194/acp-9-4207-2009

    Article  CAS  Google Scholar 

  • Fares, S., & Loreto, F. (2015). Isoprenoid emissions by the Mediterranean vegetation in Castelporziano. Rendiconti Fis. Accademia Lincei, 26, 493–498. https://doi.org/10.1007/s12210-014-0331-z

    Article  Google Scholar 

  • Fares, S., Park, J. H., Gentner, D. R., Weber, R., Ormeño, E., Karlik, J., & Goldstein, A. H. (2012). Seasonal cycles of biogenic volatile organic compound fluxes and concentrations in a California Citrus orchard. Atmospheric Chemistry and Physics, 12, 9865–9880. https://doi.org/10.5194/acp-12-9865-2012

    Article  CAS  Google Scholar 

  • Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J. K., Granier, C., Neftel, A., Isaksen, I. S. A., Laj, P., Maione, M., Monks, P. S., Burkhardt, J., Daemmgen, U., Neirynck, J., … Erisman, J. W. (2009). Atmospheric composition change: Ecosystems–Atmosphere interactions. Atmospheric Environment, 43, 5193–5267. https://doi.org/10.1016/j.atmosenv.2009.07.068

    Article  CAS  Google Scholar 

  • Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A., Pöhlker, C., Andreae, M. O., Lang-Yona, N., Burrows, S. M., Gunthe, S. S., & Elbert, W. (2016). Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmospheric Research, 182, 346–376. https://doi.org/10.1016/j.atmosres.2016.07.018

    Article  CAS  Google Scholar 

  • Fuchs, H., Novelli, A., Rolletter, M., Hofzumahaus, A., Pfannerstill, E. Y., Kessel, S., Edtbauer, A., Williams, J., Michoud, V., Dusanter, S., Locoge, N., Zannoni, N., Gros, V., Truong, F., Sarda-Esteve, R., Cryer, D. R., Brumby, C. A., Whalley, L. K., Stone, D., … Wahner, A. (2017). Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR. Atmospheric Measurement Techniques, 10, 4023–4053. https://doi.org/10.5194/amt-10-4023-2017

    Article  CAS  Google Scholar 

  • Genard-Zielinski, A.-C., Ormeño, E., Boissard, C., & Fernandez, C. (2014). Isoprene emissions from downy oak under water limitation during an entire growing season: What cost for growth? PLoS One, 9, e112418. https://doi.org/10.1371/journal.pone.0112418

    Article  CAS  Google Scholar 

  • Genard-Zielinski, A.-C., Boissard, C., Fernandez, C., Kalogridis, C., Lathière, J., Gros, V., Bonnaire, N., & Ormeño, E. (2015). Variability of BVOC emissions from a Mediterranean mixed forest in southern France with a focus on Quercus pubescens. Atmospheric Chemistry and Physics, 15, 431–446. https://doi.org/10.5194/acp-15-431-2015

    Article  CAS  Google Scholar 

  • Genard-Zielinski, A.-C., Boissard, C., Ormeño, E., Lathière, J., Reiter, I. M., Wortham, H., Orts, J.-P., Temime-Roussel, B., Guenet, B., Bartsch, S., Gauquelin, T., & Fernandez, C. (2018). Seasonal variations of Quercus pubescens isoprene emissions from an in natura forest under drought stress and sensitivity to future climate change in the Mediterranean area. Biogeosciences, 15, 4711–4730. https://doi.org/10.5194/bg-15-4711-2018

    Article  CAS  Google Scholar 

  • Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global Planet Change, 63, 90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  • Giorgi, F., & Raffaele, F. (2023). The climate of the Mediterranean region and future projections in relation to air quality issues. In F. Dulac, S. Sauvage, & E. Hamonou (Eds.), Atmospheric chemistry in the Mediterranean Region (Vol. 1, Background information and pollutants distribution) (). Springer.

    Google Scholar 

  • Goldstein, A. H., & Galbally, I. E. (2007). Known and unexplored organic constituents in the Earth’s atmosphere. Environmental Science & Technology, 41, 1514–1521. https://doi.org/10.1021/es072476p

    Article  CAS  Google Scholar 

  • Gray, C. M., Monson, R. K., & Fierer, N. (2010). Emissions of volatile organic compounds during the decomposition of plant litter. Journal of Geophysical Research, 115, G03015. https://doi.org/10.1029/2010JG001291

    Article  CAS  Google Scholar 

  • Grote, R., Morfopoulos, C., Niinemets, Ü., Sun, Z., Keenan, T. F., Pacifico, F., & Butler, T. M. (2014). A fully integrated isoprenoid emissions model coupling emissions to photosynthetic characteristics. Plant, Cell & Environment, 37, 1965–1980. https://doi.org/10.1111/pce.12326

    Article  CAS  Google Scholar 

  • Gros, V., & Zannoni, N. (2022). Total OH reactivity. In F. Dulac, S. Sauvage, & E. Hamonou (Eds.), Atmospheric chemistry in the Mediterranean Region (Vol. 2, From air pollutant sources to impacts). Springer, this volume. https://doi.org/10.1007/978-3-030-82385-6_7

    Google Scholar 

  • Guenther, A. (2013). Biological and Chemical Diversity of Biogenic Volatile Organic Emissions into the Atmosphere. ISRN Atmospheric Sciences 20131-27. https://doi.org/10.1155/2013/786290

  • Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., & Zimmerman, P. (1995). A global model of natural volatile organic compound emissions. Journal of Geophysical Research, 100, 8873. https://doi.org/10.1029/94JD02950

    Article  CAS  Google Scholar 

  • Guenther, A. B., & Hills, A. J. (1998). Eddy covariance measurement of isoprene fluxes. Journal of Geophysical Research, 103, 13145–13152. https://doi.org/10.1029/97JD03283

    Article  CAS  Google Scholar 

  • Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., & Geron, C. (2006). Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6, 3181–3210. https://doi.org/10.5194/acp-6-3181-2006

    Article  CAS  Google Scholar 

  • Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471–1492. https://doi.org/10.5194/gmd-5-1471-2012

    Article  Google Scholar 

  • Harrison, D., Hunter, M. C., Lewis, A. C., Seakins, P. W., Nunes, T. V., & Pio, C. A. (2001). Isoprene and monoterpene emission from the coniferous species Abies borisii-regis - implications for regional air chemistry in Greece. Atmospheric Environment, 35, 4687−4698. https://doi.org/10.1016/S1352-2310(01)00092-9

  • Hewitt, C., Karl, T., Langford, B., Owen, S., & Possell, M. (2011). Quantification of VOC emission rates from the biosphere. Trends in Analytical Chemistry, 30, 937–944. https://doi.org/10.1016/j.trac.2011.03.008

    Article  CAS  Google Scholar 

  • Jacob, D. J., Field B.D., Li Q., Blake D.R., de Gouw J., Warneke C., Hansel A., Wisthaler A., Singh H.B. and Guenther A. (2005). Global budget of methanol: Constraints from atmospheric observations. Journal of Geophysical Research, 110, D08303. https://doi.org/10.1029/2004JD005172

  • Jaidan, N., El Amraoui, L., Attié, J.-L., Ricaud, P., & Dulac, F. (2018). Future changes in surface ozone over the Mediterranean Basin in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx). Atmospheric Chemistry and Physics, 18, 9351–9373. https://doi.org/10.5194/acp-18-9351-2018

    Article  CAS  Google Scholar 

  • Jensen, N. R., Gruening, C., Goded, I., Müller, M., Hjorth, J., & Wisthaler, A. (2018). Eddy-covariance flux measurements in an Italian deciduous forest using PTR-Tof-MS, PTR-QMS and FIS. International Journal of Environmental Analytical Chemistry, 98, 758–788. https://doi.org/10.1080/03067319.2018.1502758

    Article  CAS  Google Scholar 

  • Kalabokas, P., Jensen, N. R., Roveri, M., Hjorth, J., Eremenko, M., Cuesta, J., Dufour, G., Foret, G., & Beekmann, M. (2020). A study of the influence of tropospheric subsidence on spring and summer surface ozone concentrations at the JRC Ispra station in northern Italy. Atmospheric Chemistry and Physics, 20, 1861–1885. https://doi.org/10.5194/acp-20-1861-2020

    Article  CAS  Google Scholar 

  • Kalogridis, C., Gros, V., Sarda-Esteve, R., Langford, B., Loubet, B., Bonsang, B., Bonnaire, N., Nemitz, E., Genard, A.-C., Boissard, C., Fernandez, C., Ormeño, E., Baisnée, D., Reiter, I., & Lathière, J. (2014). Concentrations and fluxes of isoprene and oxygenated VOCs at a French Mediterranean oak forest. Atmospheric Chemistry and Physics, 14, 10085–10102. https://doi.org/10.5194/acp-14-10085-2014

    Article  CAS  Google Scholar 

  • Karl, T. G., Spirig, C., Rinne, J., Stroud, C., Prevost, P., Greenberg, J., Fall, R., & Guenther, A. (2002). Virtual disjunct eddy covariance measurements of organic compound fluxes from a subalpine forest using proton transfer reaction mass spectrometry. Atmospheric Chemistry and Physics, 2, 279–291. https://doi.org/10.5194/acp-2-279-2002

    Article  CAS  Google Scholar 

  • Karl, T., Guenther, A., Yokelson, R. J., Greenberg, J., Potosnak, M., Blake, D. R., & Artaxo, P. (2007). The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. Journal of Geophysical Research, 112, D18302. https://doi.org/10.1029/2007JD008539

    Article  CAS  Google Scholar 

  • Karl, M., Guenther, A., Köble, R., Seufert, G., Leip, A., & Seufert, G. (2009). A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models. Biogeosciences, 6, 1059–1087. https://doi.org/10.5194/bg-6-1059-2009

    Article  CAS  Google Scholar 

  • Katra, I., Arotsker, L., Krasnov, H., Zaritsky, A., Kushmaro, A., & Ben-Dov, E. (2014). Richness and diversity in dust stormborne biomes at the southeast Mediterranean. Scientific Reports, 4, 5265. https://doi.org/10.1038/srep05265

    Article  CAS  Google Scholar 

  • Keenan, T., Niinemets, Ü., Sabate, S., Gracia, C., & Peñuelas, J. (2009). Process based inventory of isoprenoid emissions from European forests: Model comparisons, current knowledge and uncertainties. Atmospheric Chemistry and Physics, 9, 4053–4076. https://doi.org/10.5194/acpd-9-6147-2009

    Article  CAS  Google Scholar 

  • Kellogg, C. A., & Griffin, D. W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology & Evolution, 21, 638–644. https://doi.org/10.1016/j.tree.2006.07.004

    Article  Google Scholar 

  • Kesselmeier, J., & Staudt, M. (1999). Biogenic Volatile Organic Compounds (VOC): An overview on emission, physiology and ecology. Journal of Atmospheric Chemistry, 33, 23–88. https://doi.org/10.1023/A:1006127516791

    Article  CAS  Google Scholar 

  • Langford, B., Cash, J., Acton, W. J. F., Valach, A. C., Hewitt, C. N., Fares, S., Goded, I., Gruening, C., House, E., Kalogridis, A.-C., Gros, V., Schafers, R., Thomas, R., Broadmeadow, M., & Nemitz, E. (2017). Isoprene emission potentials from European oak forests derived from canopy flux measurements: An assessment of uncertainties and inter-algorithm variability. Biogeosciences, 14, 5571–5594. https://doi.org/10.5194/bg-14-5571-2017

    Article  CAS  Google Scholar 

  • Luchetta, L., Simon, V., Torres, L. (2000). Emission of the main biogenic volatile organic compounds in France, Pollution atmosphérique, N°167, p. 387–412

    Google Scholar 

  • Lavoir, A. V., Duffet, C., Mouillot, F., Rambal, S., Ratte, J. P., Schnitzler, J. P., & Staudt, M. (2011). Scaling-up leaf biogenic monoterpene emissions from water-limited Mediterranean landscapes: A case study with Quercus ilex woodlands. Atmospheric Environment, 45, 2888–2897. https://doi.org/10.1016/j.atmosenv.2011.02.005

    Article  CAS  Google Scholar 

  • Leff, J. W., & Fierer, N. (2008). Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biology and Biochemistry, 40, 1629–1636. https://doi.org/10.1016/j.soilbio.2008.01.018

    Article  CAS  Google Scholar 

  • Lenschow, D. H. (1995). Micrometeorological techniques for measuring biosphere-atmosphere trace gas exchange. In P. A. Matson & R. C. Hariss (Eds.), Biogenic Trace Gases: Measuring Emissions from Soil and Water (pp. 126–163). Oxford: Blackwell Science.

    Google Scholar 

  • Lenschow, D. H., Mann, J., & Kristensen, I. (1993). How long is long enough when measuring fluxes and other turbulent statistics? Journal of Atmospheric and Oceanic Technology, 11, 661–673. https://doi.org/10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2

    Article  Google Scholar 

  • Liakakou, E., Bonsang, B., Williams, J., Kalivitis, N., Kanakidou, M., & Mihalopoulos, N. (2009). C2–C8 NMHCs over the Eastern Mediterranean: Seasonal variation and impact on regional oxidation chemistry. Atmospheric Environment, 43, 5611–5621. https://doi.org/10.1016/j.atmosenv.2009.07.067

    Article  CAS  Google Scholar 

  • Llusià, J., & Peñuelas, J. (2000). Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions. American Journal of Botany, 87, 133–140. https://doi.org/10.2307/2656691

    Article  Google Scholar 

  • Martin, N. (2010). Performances des modélisations déterministes d’ozone à méso-échelle et à micro-échelle dans les Alpes-Maritimes, Cybergeo, doc. 503. https://doi.org/10.4000/cybergeo.23183.

  • Mason, R. H., Si, M., Chou, C., Irish, V. E., Dickie, R., Elizondo, P., Wong, R., Brintnell, M., Elsasser, M., Lassar, W. M., Pierce, K. M., Leaitch, W. R., MacDonald, A. M., Platt, A., Toom-Sauntry, D., Sarda-Estève, R., Schiller, C. L., Suski, K. J., Hill, T. C. J., … Bertram, A. K. (2016). Size-resolved measurements of ice-nucleating particles at six locations in North America and one in Europe. Atmospheric Chemistry and Physics, 16, 1637–1651. https://doi.org/10.5194/acp-16-1637-2016

    Article  CAS  Google Scholar 

  • Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Blond, N., Colette, A., Coll, I., Curci, G., Foret, G., Hodzic, A., Mailler, S., Meleux, F., Monge, J.-L., Pison, I., Siour, G., Turquety, S., Valari, M., Vautard, R., & Vivanco, M. G. (2013). CHIMERE 2013: A model for regional atmospheric composition modelling. Geoscientific Model Development, 6, 981–1028. https://doi.org/10.5194/gmd-6-981-2013

    Article  CAS  Google Scholar 

  • Mescioglu, E., Rahav, E., Belkin, N., Xian, P., Eigenza, J. M., Vichik, A., Herut, B., & Paytan, A. (2019). Aerosol microbiome over the Mediterranean Sea diversity and abundance. Atmosphere, 10, 440. https://doi.org/10.3390/atmos10080440

    Article  CAS  Google Scholar 

  • Michoud, V., Sciare, J., Sauvage, S., Dusanter, S., Léonardis, T., Gros, V., Kalogridis, C., Zannoni, N., Féron, A., Petit, J.-E., Crenn, V., Baisnée, D., Sarda-Estève, R., Bonnaire, N., Marchand, N., DeWitt, H. L., Pey, J., Colomb, A., Gheusi, F., … Locoge, N. (2017). Organic carbon at a remote site of the western Mediterranean Basin: Sources and chemistry during the ChArMEx SOP2 field experiment. Atmospheric Chemistry and Physics, 17, 8837–8865. https://doi.org/10.5194/acp-17-8837-2017

    Article  CAS  Google Scholar 

  • Morris, C. E., Sands, D., Bardin, M., Jaenicke, R., Vogel, B., Leyronas, C., Ariya, P., & Psenner, R. (2011). Microbiology and atmospheric processes: Research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate. Biogeosciences, 8, 17–25. https://doi.org/10.5194/bg-8-17-2011

    Article  CAS  Google Scholar 

  • Myriokefalitakis, S., Nenes, A., Baker, A. R., Mihalopoulos, N., & Kanakidou, M. (2016). Bioavailable atmospheric phosphorous supply to the global ocean: A 3-D global modeling study. Biogeosciences, 13, 6519–6543. https://doi.org/10.5194/bg-2016-215

    Article  CAS  Google Scholar 

  • Niinemets, Ü., Kuhn, U., Harley, P. C., Staudt, M., Arneth, A., Cescatti, A., Ciccioli, P., Copolovici, L., Geron, C., Guenther, A., Kesselmeier, J., Lerdau, M. T., Monson, R. K., & Peñuelas, J. (2011). Estimations of isoprenoid emission capacity from enclosure studies: Measurements, data processing, quality and standardized measurement protocols. Biogeosciences, 8, 2209–2246. https://doi.org/10.5194/bg-8-2209-2011

    Article  CAS  Google Scholar 

  • Nuñez, L., Plaza, J., Perez-Pastor, R., Pujadas, M., Gimeno, B. S., Bermejo, V., & Garcia-Alonso, S. (2002). High water vapour pressure deficit influence on Quercus ilex and Pinus pinea field monoterpene emission in the central Iberian Peninsula (Spain). Atmospheric Environment, 36, 4441–4452. https://doi.org/10.1016/S1352-2310(02)00415-6

    Article  Google Scholar 

  • Oderbolz, D. C., Aksoyoglu, S., Keller, J., Barmpadimos, I., Steinbrecher, R., Skjøth, C. A., Plaß-Dülmer, C., & Prévôt, A. S. H. (2013). A comprehensive emission inventory of biogenic volatile organic compounds in Europe: Improved seasonality and land-cover. Atmospheric Chemistry and Physics, 13, 1689–1712. https://doi.org/10.5194/acp-13-1689-2013

    Article  CAS  Google Scholar 

  • Olivier, R., Staudt, M., Lavoir, A. V., Ormeño, E., Rizvi, S. H., Baldy, V., Rivoal, A., Greff, S., Lecareux, C., & Fernandez, C. (2011a). Direct and indirect impact of sewage sludge compost spreading on Quercus coccifera monoterpene emissions in a Mediterranean shrubland. Environmental Pollution, 159, 963–969. https://doi.org/10.1016/j.envpol.2010.12.003

    Article  CAS  Google Scholar 

  • Olivier, R., Lavoir, A.-V., Ormeño, E., Mouillot, F., Greff, S., Lecareux, C., Staudt, M., & Fernandez, C. (2011b). Compost spreading in Mediterranean shrubland indirectly increases biogenic emissions by promoting growth of VOC-emitting plant parts. Atmospheric Environment, 45, 3631–3639. https://doi.org/10.1016/j.atmosenv.2011.03.060

    Article  CAS  Google Scholar 

  • Ormeño, E., Fernandez, C., Bousquet-Melou, A., Greff, S., Morin, E., Robles, C., Vila, B., & Bonin, G. (2007). Monoterpene and sesquiterpene emissions of three Mediterranean species through calcareous and siliceous soils in natural conditions. Atmospheric Environment, 41, 629–639. https://doi.org/10.1016/j.atmosenv.2006.08.027

    Article  CAS  Google Scholar 

  • Ormeño, E., Goldstein, A., & Niinemets, U. (2011). Extracting and trapping biogenic volatile organic compounds stored in plant species. Trends in Analytical Chemistry, 30, 978–989. https://doi.org/10.1016/j.trac.2011.04.006

    Article  CAS  Google Scholar 

  • Ortega, J., Helmig, D., Daly, R. W., Tanner, D. M., Guenther, A. B., & Herrick, J. D. (2008). Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques – Part B: Applications. Chemosphere, 72, 365–380. https://doi.org/10.1016/j.chemosphere.2008.02.054

    Article  CAS  Google Scholar 

  • Owen, S. M., & Hewitt, N. H. (2000). Extrapolating branch enclosure measurements to estimates of regional scale biogenic VOC fluxes in the north-western Mediterranean basin. Journal of Geophysical Research, 105, 11573–11583. https://doi.org/10.1029/1999JD901154

    Article  CAS  Google Scholar 

  • Owen, S. M., Boissard, C., Street, R. A., Duckham, S. C., Csiky, O., & Hewitt, C. N. (1997). Screening of 18 Mediterranean plant species for volatile organic compounds emissions. Atmospheric Environment, 31, 101–117. https://doi.org/10.1016/S1352-2310(97)00078-2

    Article  CAS  Google Scholar 

  • Owen, S. M., Boissard, C., & Hewitt, C. N. (2001). Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale. Atmospheric Environment, 35, 5393–5409. https://doi.org/10.1016/S1352-2310(01)00302-8

    Article  CAS  Google Scholar 

  • Park, J.-H., Goldstein, A. H., Timkovsky, J., Fares, S., Weber, R., Karlik, J., & Holzinger, R. (2013). Eddy covariance emission and deposition flux measurements using proton transfer reaction – Time of flight – Mass spectrometry (PTR-TOF-MS): Comparison with PTR-MS measured vertical gradients and fluxes. Atmospheric Chemistry and Physics, 13, 1439–1456. https://doi.org/10.5194/acp-13-1439-2013

    Article  CAS  Google Scholar 

  • Park, J.-H., Fares, S., Weber, R., & Goldstein, A. H. (2014). Biogenic volatile organic compound emissions during BEARPEX 2009 measured by eddy covariance and flux–Gradient similarity methods. Atmospheric Chemistry and Physics, 14, 231–244. https://doi.org/10.5194/acp-14-231-2014

    Article  CAS  Google Scholar 

  • Pegoraro, E., Rey, A., Greenberg, J., Harley, P., Grace, J., Malhi, Y., & Guenther, A. (2004). Effect of drought on isoprene emission rates from leaves of Quercus virginiana Mill. Atmospheric Environment, 38, 6149–6156. https://doi.org/10.1016/j.atmosenv.2004.07.028

    Article  CAS  Google Scholar 

  • Peñuelas, J., Filella, I., & Comas, P. (2002). Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology, 8, 531–544. https://doi.org/10.1046/j.1365-2486.2002.00489.x

    Article  Google Scholar 

  • Peñuelas, J., Asensio, D., Tholl, D., Wenke, K., Rosenkranz, M., Piechulla, B., & Schnitzler, J. P. (2014). Biogenic volatile emissions from the soil. Plant, Cell & Environment, 37, 1866–1891. https://doi.org/10.1111/pce.12340

    Article  CAS  Google Scholar 

  • Pio, C. A., Silva, P. A., Cerqueira, M. A., & Nunes, T. V. (2005). Diurnal and seasonal emissions of volatile organic compounds from cork oak (Quercus suber) trees. Atmospheric Environment, 39, 1817–1827. https://doi.org/10.1016/j.atmosenv.2004.11.018

    Article  CAS  Google Scholar 

  • Polymenakou, P. N., Mandalakis, M., Stephanou, E. G., & Tselepides, A. (2008). Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the Eastern Mediterranean. Environmental Health Perspectives, 116, 292–296. https://doi.org/10.1289/ehp.10684

    Article  Google Scholar 

  • Pope, F. D. (2010). Pollen grains are efficient cloud condensation nuclei. Environmental Research Letters, 5, 044015. https://doi.org/10.1088/1748-9326/5/4/044015

    Article  CAS  Google Scholar 

  • Pöschl, U., & Shiraiwa, M. (2015). Multiphase chemistry at the atmosphere–biosphere interface influencing climate and public health in the anthropocene. Chemical Reviews, 115, 4440–4475. https://doi.org/10.1021/cr500487s

    Article  CAS  Google Scholar 

  • Pöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman, J. A., Borrmann, S., Farmer, D. K., Garland, R. M., Helas, G., Jimenez, J. L., King, S. M., Manzi, A., Mikhailov, E., Pauliquevis, T., Petters, M. D., Prenni, A. J., Roldin, P., Rose, D., … Andreae, M. O. (2010). Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science, 329, 1513–1516. https://doi.org/10.1126/science.1191056

    Article  CAS  Google Scholar 

  • Rahav, E., Belkin, N., Paytan, A., & Herut, B. (2019). The relationship between air-mass trajectories and the abundance of dust-borne prokaryotes at the SE Mediterranean Sea. Atmosphere, 10, 280. https://doi.org/10.3390/atmos10050280

    Article  CAS  Google Scholar 

  • Raisi, L., Lazaridis, M., & Katsivela, E. (2010). Relationship between airborne microbial and particulate matter concentrations in the ambient air at a Mediterranean site. Global NEST Journal, 12, 84–91. https://doi.org/10.30955/gnj.000694

    Article  Google Scholar 

  • Recio, M., Docampo, S., García-Sánchez, J., Trigo, M. M., Melgar, M., & Cabezudo, B. (2010). Influence of temperature, rainfall and wind trends on grass pollination in Malaga (western Mediterranean coast). Agricultural and Forest Meteorology, 150, 931–940. https://doi.org/10.1016/j.agrformet.2010.02.012

    Article  Google Scholar 

  • Rinne, H. J. I., Guenther, A. B., Warneke, C., de Gouw, J. A., & Luxembourg, S. L. (2001). Disjunct eddy covariance technique for trace gas flux measurements. Geophysical Research Letters, 28, 3139–3142. https://doi.org/10.1029/2001GL012900

    Article  Google Scholar 

  • Rivoal, A., Fernandez, C., Lavoir, A.-V., Olivier, R., Lecareux, C., Greff, S., Roche, P., & Vila, B. (2010). Environmental control of terpene emissions from Cistus monspeliensis L. in natural Mediterranean shrublands. Chemosphere, 78, 942–949. https://doi.org/10.1016/j.chemosphere.2009.12.047

    Article  CAS  Google Scholar 

  • Sartelet, K. N., Couvidat, F., Seigneur, C., & Roustan, Y. (2012). Impact of biogenic emissions on air quality over Europe and North America. Atmospheric Environment, 53, 131–141. https://doi.org/10.1016/j.atmosenv.2011.10.046

    Article  CAS  Google Scholar 

  • Saunier, A. (2017). Réponse de la forêt à des scénarios de sécheresse appliqués à moyen et long terme en milieu naturel : Étude des COVB du chêne pubescent, principal émetteur d’isoprène en région mediterranéenne, PhD dissertation, Aix Marseille Université, Marseille, 184 pp. http://www.theses.fr/2017AIXM0106/document

  • Saunier, A., Ormeño, E., Wortham, H., Temime-Roussel, B., Lecareux, C., Boissard, C., & Fernandez, C. (2017). Chronic drought decreases anabolic and catabolic BVOC emissions of Quercus pubescens in a Mediterranean forest. Frontiers in Plant Science, 8, 71. https://doi.org/10.3389/fpls.2017.00071

    Article  Google Scholar 

  • Saunier, A., Ormeéno, E., Piga, D., Armengaud, A., Boissard, C., Lathière, J., Szopa, S., Genard-Zielinski, A.-C., & Fernandez, C. (2020). Isoprene contribution to ozone production under climate change in the French Mediterranean area. Regional Environmental Change, 20, 111. https://doi.org/10.1007/s10113-020-01697-4

    Article  Google Scholar 

  • Schade, G. W., & Goldstein, A. H. (2001). Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation. Journal of Geophysical Research, 106, 3111–3123. https://doi.org/10.1029/2000JD900592

    Article  CAS  Google Scholar 

  • Schallhart, S., Rantala, P., Nemitz, E., Taipale, D., Tillmann, R., Mentel, T. F., Loubet, B., Gerosa, G., Finco, A., Rinne, J., & Ruuskanen, T. M. (2016). Characterization of total ecosystem-scale biogenic VOC exchange at a Mediterranean oak–hornbeam forest. Atmospheric Chemistry and Physics, 16, 7171–7194. https://doi.org/10.5194/acp-16-7171-2016

    Article  CAS  Google Scholar 

  • Scheifinger, H., Belmonte, J., Buters, J., Celenk, S., Damialis, A., Dechamp, C., García-Mozo, H., Gehrig, R., Grewling, L., Halley, J. M., Hogda, K.-A., Jäger, S., Karatzas, K., Karlsen, S.-R., Koch, E., Pauling, A., Peel, R., Sikoparija, B., Smith, M., Galán-Soldevilla, C., Thibaudon, M., Vokou, D., and de Weger L. A.: Monitoring, modelling and forecasting of the pollen season, in Allergenic pollen, Sofiev, M., Bergmann, K. C., 71–126, Springer., https://doi.org/10.1007/978-94-007-4881-1_4, 2013.

    Chapter  Google Scholar 

  • Schween, J., Dlugi, R., Hewitt, C. N., & Foster, P. (1997). Determination and accuracy of VOC-fluxes above the pine/oak forest at Castelporziano. Atmospheric Environment, 31(Suppl. 1), 199–215. https://doi.org/10.1016/S1352-2310(97)00111-8

    Article  CAS  Google Scholar 

  • Seco, R., Peñuelas, J., Filella, I., Llusià, J., Molowny-Horas, R., Schallhart, S., Metzger, A., Müller, M., & Hansel, A. (2011). Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: The effect of local biogenic emissions. Atmospheric Chemistry and Physics, 11, 13161–13179. https://doi.org/10.5194/acp-11-13161-2011

    Article  CAS  Google Scholar 

  • Staudt, M., Bertin, N., Frenzel, B., & Seufert, G. (2000). Seasonal variations in amount and composition of monoterpenes emitted by young Pinus pinea trees – Implications for emission modeling. Journal of Atmospheric Chemistry, 35, 77–99. https://doi.org/10.1023/A:1006233010748

    Article  CAS  Google Scholar 

  • Staudt, M., Mandl, N., Joffre, R., & Rambal, S. (2001). Intraspecific variability of monoterpene composition emitted by Quercus ilex leaves. Canadian Journal of Forest Research, 31, 174–180. https://doi.org/10.1139/x00-153

    Article  CAS  Google Scholar 

  • Staudt, M., Rambal, S., Joffre, R., & Kesselmeier, J. (2002). Impact of drought on seasonal monoterpene emissions from Quercus ilex in southern France. Journal of Geophysical Research, 107, 4602. https://doi.org/10.1029/2001JD002043

    Article  CAS  Google Scholar 

  • Staudt, M., Joffre, R., & Rambal, S. (2003). How growth conditions affect the capacity of Quercus ilex leaves to emit monoterpenes. The New Phytologist, 158, 61–73. https://doi.org/10.1046/j.1469-8137.2003.00722.x

    Article  CAS  Google Scholar 

  • Staudt, M., Céline, M., Joggre, R., Rambal, S., Bonin, A., Landais, D., & Lumaret, R. (2004). Isoprenoid emissions of Quercus spp. (Q. suber and Q. ilex) in mixed stands contrasting in interspecific genetic introgression. The New Phytologist, 163, 573–584. https://doi.org/10.1111/j.1469-8137.2004.01140.x

    Article  CAS  Google Scholar 

  • Staudt, M., Byron, J., Piquemal, K., & Williams, J. (2019). Compartment specific chiral pinene emissions identified in a Maritime pine forest. Science of the Total Environment, 654, 1158–1166. https://doi.org/10.1016/j.scitotenv.2018.11.146

    Article  CAS  Google Scholar 

  • Steinbrecher, R., Smiatek, G., Köble, R., Seufert, G., Theloke, J., Hauff, K., Ciccioli, P., Vautard, R., & Curci, G. (2009). Intra- and inter-annual variability of VOC emissions from natural and semi-natural vegetation in Europe and neighbouring countries. Atmospheric Environment, 43, 1380–1391. https://doi.org/10.1016/j.atmosenv.2008.09.072

    Article  CAS  Google Scholar 

  • Street, R. A., Owen, S., Duckham, S. C., Boissard, C., & Hewitt, C. N. (1997). Effect of habitat and age on variations in volatile organic compound (VOC) emissions from Quercus ilex and Pinus pinea. Atmospheric Environment, 31, 89–100. https://doi.org/10.1016/S1352-2310(97)00077-0

    Article  CAS  Google Scholar 

  • Tholl, D., Boland, W., Hansel, A., Loreto, F., Röse, U. S. R., & Schnitzler, J. P. (2006). Practical approaches to plant volatile analysis. The Plant Journal, 45, 540–560. https://doi.org/10.1111/j.1365-313X.2005.02612.x

    Article  CAS  Google Scholar 

  • Valentini, R., Greco, S., Seufert, G., Bertin, N., Ciccioli, P., Cecinato, A., Brancaleoni, E., & Frattoni, M. (1997). Fluxes of biogenic VOC from Mediterranean vegetation by trap enrichment relaxed eddy accumulation. Atmospheric Environment, 31(Suppl. 1), 229–238. https://doi.org/10.1016/S1352-2310(97)00085-X

    Article  CAS  Google Scholar 

  • Valor, T., Ormeño, E., & Casals, P. (2017). Temporal effects of prescribed burning on terpene production in Mediterranean pines. Tree Physiology, 37, 1622–1636. https://doi.org/10.1093/treephys/tpx069

    Article  CAS  Google Scholar 

  • Yang, Y., Shao, M., Wang, X., Nölscher, A. C., Kessel, S., Guenther, A., & Williams, J. (2016). Towards a quantitative understanding of total OH reactivity: A review. Atmospheric Environment, 134, 147–161. https://doi.org/10.1016/j.atmosenv.2016.03.010

    Article  CAS  Google Scholar 

  • Yáñez-Serrano, A. M., Fasbender, L., Kreuzwieser, J., Dubbert, D., Haberstroh, S., Lobo-do-Vale, R., Caldeira, M. C., & Werner, C. (2018). Volatile diterpene emission by two Mediterranean Cistaceae shrubs. Scientific Reports, 8, 6855. https://doi.org/10.1038/s41598-018-25056-w

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Gros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gros, V. et al. (2022). Emissions from the Mediterranean Vegetation. In: Dulac, F., Sauvage, S., Hamonou, E. (eds) Atmospheric Chemistry in the Mediterranean Region. Springer, Cham. https://doi.org/10.1007/978-3-030-82385-6_3

Download citation

Publish with us

Policies and ethics