Skip to main content

Biogenic Volatile Organic Compounds in Amazonian Forest Ecosystems

  • Chapter
  • First Online:
Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin

Part of the book series: Ecological Studies ((ECOLSTUD,volume 227))

Abstract

Plants produce and emit a large array of volatile metabolites termed biogenic volatile organic compounds (BVOCs) as an integral part of primary and secondary metabolism. Although well studied for their impacts on atmospheric processes, there is much to learn about their biological functions. It is now recognised that many cellular processes leave unique volatile fingerprints behind that can be studied through the acquisition of BVOC profiles in the headspace atmospheres of plants across a wide range of spatial and temporal scales from leaves, whole organisms, ecosystems, and regions and from seconds to seasons. In this chapter, in-plant BVOC production and potential functional roles in the Amazon basin are discussed. The chapter closes with some suggested future research on Amazonian BVOCs, specifically—detailed studies on the identities, fluxes, and environmental dependencies of BVOC emissions including the characterisation of potential bidirectional exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreae M, Talbot R, Andreae T, Harriss R (1988) Formic and acetic acid over the central Amazon region, Brazil: 1. Dry season. J Geophys Res: Atmos (1984–2012) 93(D2):1616–1624

    Article  CAS  Google Scholar 

  • Andreou A, Feussner I (2009) Lipoxygenases—structure and reaction mechanism. Phytochemistry 70(13–14):1504–1510. doi:10.1016/j.phytochem.2009.05.008

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arimura G, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50(5):911–923. doi:10.1093/Pcp/Pcp030

    Article  CAS  PubMed  Google Scholar 

  • Artaxo P, Rizzo LV, Paixão M, De Lucca S, Oliveira PH, Lara LL, Wiedemann KT, Andreae MO, Holben B, Schafer J, Correia AL, Pauliquevis TM (2009) Aerosol particles in Amazonia: their composition, role in the radiation balance, cloud formation, and nutrient cycles. In: Keller M, Bustamante M, Gash J, Silva Dias P (eds) Amazonia and global change. American Geophysical Union, Washington, DC, pp 233–250. doi:10.1029/2008gm000847

    Chapter  Google Scholar 

  • Beauchamp J, Wisthaler A, Hansel A, Kleist E, Miebach M, Niinemets U, Schurr U, Wildt J (2005) Ozone induced emissions of biogenic VOC from tobacco: relationships between ozone uptake and emission of LOX products. Plant Cell Environ 28(10):1334–1343

    Article  CAS  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161(5):839–851. doi:10.1016/S0168-9452(01)00490-3

    Article  CAS  Google Scholar 

  • Bracho-Nunez A, Knothe NM, Costa WR, Astrid LRM, Kleiss B, Rottenberger S, Piedade MTF, Kesselmeier J (2012) Root anoxia effects on physiology and emissions of volatile organic compounds (VOC) under short-and long-term inundation of trees from Amazonian floodplains. SpringerPlus 1(1):1–16

    Article  CAS  Google Scholar 

  • D’Auria JC, Pichersky E, Schaub A, Hansel A, Gershenzon J (2007) Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant J 49(2):194–207. doi:10.1111/j.1365-313X.2006.02946.x

    Article  CAS  PubMed  Google Scholar 

  • De Gouw JA, Howard CJ, Custer TG, Baker BM, Fall R (2000) Proton-transfer chemical-ionization mass spectrometry allows real-time analysis of volatile organic compounds released from cutting and drying of crops. Environ Sci Technol 34(12):2640–2648

    Article  CAS  Google Scholar 

  • Durand T, Bultel-Ponce V, Guy A, Berger S, Mueller MJ, Galano JM (2009) New bioactive oxylipins formed by non-enzymatic free-radical-catalyzed pathways: the phytoprostanes. Lipids 44(10):875–888. doi:10.1007/s11745-009-3351-1

    Article  CAS  PubMed  Google Scholar 

  • Fall R (2003) Abundant oxygenates in the atmosphere: a biochemical perspective. Chem Rev 103(12):4941–4951

    Article  CAS  PubMed  Google Scholar 

  • Fall R, Benson AA (1996) Leaf methanol—the simplest natural product from plants. Trends Plant Sci 1(9):296–301

    Article  Google Scholar 

  • Fall R, Karl T, Hansel A, Jordan A, Lindinger W (1999) Volatile organic compounds emitted after leaf wounding: on-line analysis by proton-transfer-reaction mass spectrometry. J Geophys Res: Atmos 104(D13):15963–15974

    Article  CAS  Google Scholar 

  • Fall R, Karl T, Jordon A, Lindinger W (2001) Biogenic C5VOCs: release from leaves after freeze-thaw wounding and occurrence in air at a high mountain observatory. Atmos Environ 35(22):3905–3916

    Article  CAS  Google Scholar 

  • Frankel EN, Hu ML, Tappel AL (1989) Rapid headspace gas-chromatography of hexanal as a measure of lipid-peroxidation in biological samples. Lipids 24(11):976–981

    Article  CAS  PubMed  Google Scholar 

  • Gabriel R, Schäfer L, Gerlach C, Rausch T, Kesselmeier J (1999) Factors controlling the emissions of volatile organic acids from leaves of Quercus ilex L. (Holm oak). Atmos Environ 33(9):1347–1355

    Article  CAS  Google Scholar 

  • Ganzeveld L, Eerdekens G, Feig G, Fischer H, Harder H, Königstedt R, Kubistin D, Martinez M, Meixner F, Scheeren H (2008) Surface and boundary layer exchanges of volatile organic compounds, nitrogen oxides and ozone during the GABRIEL campaign. Atmos Chem Phys 8(20):6223–6243

    Article  CAS  Google Scholar 

  • Gigot C, Ongena M, Fauconnier ML, Wathelet JP, Du Jardin P, Thonart P (2010) The lipoxygenase metabolic pathway in plants: potential for industrial production of natural green leaf volatiles. Biotechnol Agron Soc 14(3):451–460

    Google Scholar 

  • Greenberg JP, Guenther AB, Pétron G, Wiedinmyer C, Vega O, Gatti LV, Tota J, Fisch G (2004) Biogenic VOC emissions from forested Amazonian landscapes. Glob Chang Biol 10(5):651–662

    Article  Google Scholar 

  • Guenther A (2013) Biological and chemical diversity of biogenic volatile organic emissions into the atmosphere. ISRN Atmos Sci

    Google Scholar 

  • Gutteridge JMC (1995) Lipid-peroxidation and antioxidants as biomarkers of tissue-damage. Clin Chem 41(12B):1819–1828

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford Science Publications, Clarendon Press, Oxford, New York, NY

    Google Scholar 

  • Harley P, Greenberg J, Niinemets U, Guenther A (2007) Environmental controls over methanol emissions from leaves. Biogeosci Discuss 4:2593–2640

    Article  Google Scholar 

  • Hartley DP, Kolaja KL, Reichard J, Petersen DR (1999) 4-hydroxynonenal and malondialdehyde hepatic protein adducts in rats treated with carbon tetrachloride: Immunochemical detection and lobular localization. Toxicol Appl Pharmacol 161(1):23–33

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka A (1993) Studies on biogeneration and physiological-role of green odor by plant. Nippon Nogeik Kaishi 67(10):1391–1398

    Article  CAS  Google Scholar 

  • Heiden AC, Kobel K, Langebartels C, Schuh-Thomas G, Wildt J (2003) Emissions of oxygenated volatile organic compounds from plants—part I: emissions from lipoxygenase activity. J Atmos Chem 45(2):143–172

    Article  CAS  Google Scholar 

  • Holopainen JK, Heijari J, Oksanen E, Alessio GA (2010) Leaf volatile emissions of Betula pendula during autumn coloration and leaf fall. J Chem Ecol 36(10):1068–1075. doi:10.1007/s10886-010-9857-4

    Article  CAS  PubMed  Google Scholar 

  • Jansen RMC, Miebach M, Kleist E, van Henten EJ, Wildt J (2009) Release of lipoxygenase products and monoterpenes by tomato plants as an indicator of Botrytis cinerea-induced stress. Plant Biol 11(6):859–868. doi:10.1111/j.1438-8677.2008.00183.x

    Article  CAS  PubMed  Google Scholar 

  • Jardine K, Harley P, Karl T, Guenther A, Lerdau M, Mak J (2008) Plant physiological and environmental controls over the exchange of acetaldehyde between forest canopies and the atmosphere. Biogeosciences 5(6):1559–1572

    Article  CAS  Google Scholar 

  • Jardine K, Abrell L, Kurc SA, Huxman T, Ortega J, Guenther A (2010a) Volatile organic compound emissions from Larrea tridentata (creosotebush). Atmos Chem Phys 10(24):12191–12206. doi:10.5194/acp-10-12191-2010

    Article  CAS  Google Scholar 

  • Jardine K, Sommer E, Saleska S, Huxman T, Harley P, Abrell L (2010b) Gas phase measurements of pyruvic acid and its volatile metabolites. Environ Sci Technol 44:2454–2460. doi:10.1021/es903544p

    Article  CAS  PubMed  Google Scholar 

  • Jardine K, Abrell L, Yanez Serrano AM, Arneth A, Alves E, Kesselmeier J, Huxman T, Saleska S, Jardine A, Taylor T, Artaxo P (2011a) Ecosystem-scale compensation points of formic and acetic acid in the central Amazon. Biogeosciences 8:3709–3720

    Article  CAS  Google Scholar 

  • Jardine K, Abrell L, Yanez Serrano AM, Arneth A, Yoko Ishida F, Huxman T, Saleska S, Jardine A, Karl T, Artaxo P (2011b) Within-canopy sesquiterpene ozonolysis in Amazonia. J Geophys Res [Atmos] 116:D19301. doi:10.1029/2011JD016243

    Article  CAS  Google Scholar 

  • Jardine K, Abrell L, Jardine A, Huxman T, Saleska S, Arneth A, Monson R, Karl T, Fares S, Loreto F, Goldstein A (2012a) Within-plant isoprene oxidation confirmed by direct emissions of oxidation products methyl vinyl ketone and methacrolein. Glob Chang Biol 18:973–984

    Article  Google Scholar 

  • Jardine K, Barron-Gafford GA, Norman JP, Abrell L, Monson RK, Meyers KT, Pavao-Zuckerman M, Dontsova K, Kleist E, Werner C, Huxman TE (2012b) Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light–dark transitions. Photosynth Res 113(1–3):321–333. doi:10.1007/s11120-012-9746-5

    Article  CAS  PubMed  Google Scholar 

  • Jardine KJ, Meyers K, Abrell L, Alves EG, Serrano AM, Kesselmeier J, Karl T, Guenther A, Chambers JQ, Vickers C (2013) Emissions of putative isoprene oxidation products from mango branches under abiotic stress. J Exp Bot 64(12):3697–3709. doi:10.1093/Jxb/Ert202

    Article  CAS  PubMed  Google Scholar 

  • Jardine K, Wegener F, Abrell L, van Haren J, Werner C (2014) Phytogenic biosynthesis and emission of methyl acetate. Plant Cell Environ 37(2):414–424

    Article  CAS  PubMed  Google Scholar 

  • Jones CA, Rasmussen RA (1975) Production of isoprene by leaf tissue. Plant Physiol 55(6):982–987. doi:10.1104/Pp.55.6.982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karl T, Harley P, Guenther A, Rasmussen R, Baker B, Jardine K, Nemitz E (2005) The bi-directional exchange of oxygenated VOCs between a loblolly pine (Pinus taeda) plantation and the atmosphere. Atmos Chem Phys 5(11):3015–3031

    Article  CAS  Google Scholar 

  • Karl T, Guenther A, Yokelson RJ, Greenberg J, Potosnak M, Blake DR, Artaxo P (2007) The tropical forest and fire emissions experiment: emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. J Geophys Res: Atmos 112(D18). doi: 10.1029/2007jd008539. Artn D18302

  • Karl T, Guenther A, Turnipseed A, Patton E, Jardine K (2008) Chemical sensing of plant stress at the ecosystem scale. Biogeosciences 5(5):1287–1294

    Article  CAS  Google Scholar 

  • Kawai Y, Takeda S, Terao J (2007) Lipidomic analysis for lipid peroxidation-derived aldehydes using gas chromatography–mass spectrometry. Chem Res Toxicol 20(1):99–107. doi:10.1021/Tx060199e

    Article  CAS  PubMed  Google Scholar 

  • Kesselmeier J (2001) Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: a compilation of field and laboratory studies. J Atmos Chem 39(3):219–233

    Article  CAS  Google Scholar 

  • Kesselmeier J, Bode K, Hofmann U, Muller H, Schafer L, Wolf A, Ciccioli P, Brancaleoni E, Cecinato A, Frattoni M, Foster P, Ferrari C, Jacob V, Fugit JL, Dutaur L, Simon V, Torres L (1997) Emission of short chained organic acids, aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiological activities, carbon budget and emission algorithms. Atmos Environ 31:119–133. doi:10.10.16/S1352-2310(97)00079-4

  • Kesselmeier J, Kuhn U, Rottenberger S, Biesenthal T, Wolf A, Schebeske G, Andreae M, Ciccioli P, Brancaleoni E, Frattoni M (2002) Concentrations and species composition of atmospheric volatile organic compounds (VOCs) as observed during the wet and dry season in Rondonia (Amazonia). J Geophys Res: Atmos (1984–2012) 107(D20):LBA 20-21–LBA 20-13

    Article  CAS  Google Scholar 

  • Lelieveld J, Butler TM, Crowley JN, Dillon TJ, Fischer H, Ganzeveld L, Harder H, Lawrence MG, Martinez M, Taraborrelli D, Williams J (2008) Atmospheric oxidation capacity sustained by a tropical forest. Nature 452(7188):737–740. doi:10.1038/Nature06870

    Article  CAS  PubMed  Google Scholar 

  • Levis S, Wiedinmyer C, Bonan GB, Guenther A (2003) Simulating biogenic volatile organic compound emissions in the community climate system model. J Geophys Res 108(D21):4659

    Article  CAS  Google Scholar 

  • Long EK, Picklo MJ (2010) Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: make some room HNE …. Free Radic Biol Med 49(1):1–8. doi:10.1016/j.freeradbiomed.2010.03.015

    Article  CAS  PubMed  Google Scholar 

  • Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15(3):154–166. doi:10.1016/j.tplants.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127(4):1781–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreto F, Barta C, Brilli F, Nogues I (2006) On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ 29(9):1820–1828. doi:10.1111/j.1365-3040.2006.01561.x

    Article  CAS  PubMed  Google Scholar 

  • Loreto F, Centritto M, Barta C, Calfapietra C, Fares S, Monson RK (2007) The relationship between isoprene emission rate and dark respiration rate in white poplar (Populus alba L.) leaves. Plant Cell Environ 30(5):662–669. doi:10.1111/j.1365-3040.2007.01648.x

    Article  CAS  PubMed  Google Scholar 

  • Macarthur RH (1965) Patterns of species diversity. Biol Rev 40(4):510–533. doi:10.1111/j.1469-185X.1965.tb00815.x

    Article  Google Scholar 

  • Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP (1997) A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. J Neurochem 68(1):255–264

    Article  CAS  PubMed  Google Scholar 

  • Mene-Saffrane L, Dubugnon L, Chetelat A, Stolz S, Gouhier-Darimont C, Farmer EE (2009) Nonenzymatic oxidation of trienoic fatty acids contributes to reactive oxygen species management in Arabidopsis. J Biol Chem 284(3):1702–1708. doi:10.1074/jbc.M807114200

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16(6):300–309. doi:10.1016/j.tplants.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Biol 52(1):561–591

    Article  Google Scholar 

  • Monson RK (2002) Volatile organic compound emissions from terrestrial ecosystems: a primary biological control over atmospheric chemistry. Isr J Chem 42(1):29–42

    Article  CAS  Google Scholar 

  • Monson RK, Fall R (1989) Isoprene emission from aspen leaves—influence of environment and relation to photosynthesis and photorespiration. Plant Physiol 90(1):267–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moseley R, Hilton JR, Stephens P, Waddington RJ, Thomas DW (2003) Evaluation of oxidative stress biomarkers in chronic inflammatory disease prognoses. J Dent Res 82:545–545

    Google Scholar 

  • Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P (1997) Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem 43(7):1209–1214

    CAS  PubMed  Google Scholar 

  • Niinemets U (2010) Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci 15(3):145–153. doi:10.1016/j.tplants.2009.11.008

    Article  CAS  PubMed  Google Scholar 

  • Oliver DJ, Nikolau BJ, Wurtele ES (2009) Acetyl-CoA—life at the metabolic nexus. Plant Sci 176(5):597–601

    Article  CAS  Google Scholar 

  • Oro J, Nooner DW, Zlatkis A, Wikstrom SA, Barghoor ES (1965) Hydrocarbons of biological origin in sediments about 2 billion years old. Science 148(3666):77–79

    Article  CAS  PubMed  Google Scholar 

  • Paulot F, Wunch D, Crounse J, Toon G, Millet D, DeCarlo P, Vigouroux C, Deutscher NM, González Abad G, Notholt J (2011) Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmos Chem Phys 11(5):1989–2013

    Article  CAS  Google Scholar 

  • Pophof B, Stange G, Abrell L (2005) Volatile organic compounds as signals in a plant–herbivore system: electrophysiological responses in olfactory sensilla of the moth Cactoblastis cactorum. Chem Senses 30(1):51–68

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen R, Khalil M (1988) Isoprene over the Amazon basin. J Geophys Res: Atmos (1984–2012) 93(D2):1417–1421

    Article  CAS  Google Scholar 

  • Sarmiento J, Gloor M, Gruber N, Beaulieu C, Jacobson A, Mikaloff Fletcher S, Pacala S, Rodgers K (2010) Trends and regional distributions of land and ocean carbon sinks. Biogeosciences 7(8):2351–2367

    Article  CAS  Google Scholar 

  • Shibamoto T (2006) Analytical methods for trace levels of reactive carbonyl compounds formed in lipid peroxidation systems. J Pharmaceut Biomed 41(1):12–25

    Article  CAS  Google Scholar 

  • Shulaev V, Oliver DJ (2006) Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol 141(2):367–372. doi:10.1104/pp.106.077925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steeghs MML, Moeskops BAWM, van Swam K, Cristescu SM, Scheepers PTJ, Harren FJM (2006) On-line monitoring of UV-induced lipid peroxidation products from human skin in vivo using proton-transfer reaction mass spectrometry. Int J Mass Spectrom 253(1–2):58–64. doi:10.1016/j.ijms.2006.02.015

    Article  CAS  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14(6):691–699. doi:10.1016/j.pbi.2011.07.014

    Article  CAS  PubMed  Google Scholar 

  • Talbot R, Andreae M, Berresheim H, Jacob D, Beecher K (1990) Sources and sinks of formic, acetic, and pyruvic acids over central Amazonia 2. Wet season. J Geophys Res 95(D10):16799–16716, 16811

    Article  CAS  Google Scholar 

  • Tegeder M, Weber AP (2008) Metabolite transporters in the control of plant primary metabolism. In: Plaxton WC, McManus MT (eds) Annual plant reviews, volume 22: Control of primary metabolism in plants. Blackwell Publishing Ltd, Oxford, pp 85–120

    Google Scholar 

  • ter Steege H, Pitman NC, Sabatier D, Baraloto C, Salomão RP, Guevara JE, Phillips OL, Castilho CV, Magnusson WE, Molino J-F (2013) Hyperdominance in the Amazonian tree flora. Science 342(6156):1243092

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Edreva A, Loreto F (2004) Endogenous isoprene protects Phragmites australis leaves against singlet oxygen. Physiol Plant 122(2):219–225. doi:10.1111/j.0031-9317.2004.00392.x

    Article  CAS  Google Scholar 

  • Velikova V, Pinelli P, Pasqualini S, Reale L, Ferranti F, Loreto F (2005) Isoprene decreases the concentration of nitric oxide in leaves exposed to elevated ozone. New Phytol 166(2):419–426. doi:10.1111/j.1469-8137.2005.01409.x

    Article  CAS  PubMed  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5(5):283–291

    Article  CAS  PubMed  Google Scholar 

  • Weng J-K, Philippe RN, Noel JP (2012) The rise of chemodiversity in plants. Science 336(6089):1667–1670

    Article  CAS  PubMed  Google Scholar 

  • Yan ZG, Wang CZ (2006) Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize. Phytochemistry 67(1):34–42. doi:10.1016/j.phytochem.2005.10.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported as part of the GoAmazon 2014/5 and the Next Generation Ecosystem Experiments-Tropics (NGEE-Tropics) funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research through contract no. DE-AC02-05CH11231 to LBNL, as part of DOE’s Terrestrial Ecosystem Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolby Jardine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jardine, K., Jardine, A. (2016). Biogenic Volatile Organic Compounds in Amazonian Forest Ecosystems. In: Nagy, L., Forsberg, B., Artaxo, P. (eds) Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin. Ecological Studies, vol 227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49902-3_2

Download citation

Publish with us

Policies and ethics