Skip to main content

Advertisement

Log in

A phytoplankton absorption-based primary productivity model for remote sensing in the Southern Ocean

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Recent global environmental changes such as an increase in sea surface temperature (SST) are likely to impact primary productivity of phytoplankton in the Southern Ocean. However, models to estimate net primary production using satellite data use SST and uncertain estimation of chlorophyll a (chl-a) concentration. A primary productivity model for satellite ocean color data from the Southern Ocean, which is based on the light absorption coefficient of phytoplankton to reduce uncertainties of sea surface chl-a estimations and bias in optimal values of chl-a normalized productivity derived from SST, has been developed. The new model was able to estimate net primary productivity in the water column (PP eu) without dependency on temperature when in the range of −2 to 25°C, and it explained 51% of the observed variability in PP eu with a root mean square error (RMSE) of 0.15. Application of the model revealed that the SST dependent model has overestimated PP eu in warmer waters around the Subtropical Front, and underestimated PP eu in colder waters poleward of the Sub-Antarctic Front. This absorption-based primary productivity model contributes to a study of the relationship among spatio-temporal variations in the physical environment, and biogeochemical cycles in the Southern Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alvain S, Moulin C, Dandonneau Y, Bréon FM (2005) Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep Sea Res 52:1989–2004

    Article  Google Scholar 

  • Aoki S, Rintoul SR, Hasumoto H, Kinoshita H (2006) Frontal positions and mixed layer evolution in the Seasonal Ice Zone along 140°E in 2001/02. Polar Biosci 20:1–20

    Google Scholar 

  • Arrigo KR, van Dijken GL (2004) Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica. Deep Sea Res II 51:117–138

    Article  CAS  Google Scholar 

  • Austin RW (1974) The remote sensing of spectral radiance from below the ocean surface. In: Jerlov NG, Nielsen ES (eds) Optical aspects of oceanography. Academic Press, New York, pp 317–344

    Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997a) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42:1–20

    Article  CAS  Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997b) A consumer’s guide to phytoplankton primary productivity models. Limnol Oceanogr 42:1479–1491

    Article  Google Scholar 

  • Behrenfeld MJ, Westberry TK, Boss ES, O’Malley RT, Siegel DA, Wiggert JD, Franz BA, McClain CR, Feldman GC, Doney SC, Moore JK, Dall’Olmo G, Milligan AJ, Lima I, Mahowald N (2009) Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeoscience 6:779–794

    Article  Google Scholar 

  • Bricaud A, Morel A, Babin M, Allali K, Claustre H (1998) Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models. J Geophys Res 103:31033–31044

    Article  Google Scholar 

  • Dierssen HM, Vernet M, Smith RC (2000) Optimizing models for remotely estimating primary production in Antarctic coastal waters. Antarct Sci 12:20–32

    Article  Google Scholar 

  • Gordon HR, Clark DK, Brown JW, Brown OB, Evans RH, Broenkow WW (1983) Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates. Appl Opt 22:20–36

    Article  CAS  PubMed  Google Scholar 

  • Gower J, King S (2007) An Antarctic ice-related “superbloom” observed with the MERIS satellite imager. Geophys Res Lett 34:L15501. doi:10.1029/2007GL029638

    Article  Google Scholar 

  • Hama T, Miyazaki T, Ogawa Y, Iwakuma T, Takahashi M, Otsuki A, Ichimura S (1983) Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar Biol 73:31–36

    Article  CAS  Google Scholar 

  • Hirata T, Aiken J, Hardman-Mountford N, Smyth TJ, Barlow RG (2008) An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens Environ 112:3153–3159

    Article  Google Scholar 

  • Hirawake T, Satoh H, Ishimaru T, Yamaguchi Y, Kishino M (2000) Bio-optical relationship of Case I waters: the difference between the low- and mid-latitude waters and the Southern Ocean. J Oceanogr 56:245–260

    Article  CAS  Google Scholar 

  • Kishino M, Takahashi M, Okami N, Ichimura S (1985) Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull Mar Sci 37:634–642

    Google Scholar 

  • Lance VP, Hiscock MR, Hilting AK, Stuebe DA, Bidigare RR, Smith WO Jr, Barber RT (2007) Primary productivity, differential size fraction and pigment composition responses in two Southern Ocean in situ iron enrichments. Deep Sea Res 54:747–773

    Article  CAS  Google Scholar 

  • Le Quéré C, Rödenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N, Heimann M (2007) Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316(5832):1735–1738

    Article  PubMed  Google Scholar 

  • Lee ZP, Carder KL (2004) Absorption spectrum of phytoplankton pigments derived from hyperspectral remote-sensing reflectance. Remote Sens Environ 89:361–368

    Article  Google Scholar 

  • Lee ZP, Carder KL, Arnone RA (2002) Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Appl Opt 41(27):5755–5772

    Article  PubMed  Google Scholar 

  • Lee ZP, Weidemann A, Kindle J, Arnone R, Carder KL, Davis C (2007) Euphotic zone depth: its derivation and implication to ocean-color remote sensing. J Geophys Res 112:C03009. doi:10.1029/2006JC003802

    Article  Google Scholar 

  • Li WKW, Harrison WG (1982) Carbon flow into the end-products of photosynthesis in short and long incubations of a natural phytoplankton population. Mar Biol 72:175–182

    Article  Google Scholar 

  • Marra J, Trees CC, O’Reilly JE (2007) Phytoplankton pigment absorption: a strong predictor of primary productivity in the surface ocean. Deep Sea Res 54:155–163

    Article  Google Scholar 

  • Marrari M, Hu C, Daly K (2006) Validation of SeaWiFS chlorophyll a concentrations in the Southern Ocean: a revisit. Remote Sens Environ 105:367–375

    Article  Google Scholar 

  • Metzl N, Brunet C, Jabaud-Jan A, Poisson A, Schauer B (2006) Summer and winter air-sea CO2 fluxes in the Southern Ocean. Deep Sea Res 53:1548–1563

    Article  CAS  Google Scholar 

  • Mitchell BG (1990) Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT). In: Spinrad RW (ed) Ocean optics X. SPIE 1302, pp 137–148

  • Mitchell BG (1992) Predictive bio-optical relationships for polar oceans and marginal ice zones. J Mar Sys 3:91–105

    Article  Google Scholar 

  • Moore JK, Abbott MR (2000) Phytoplankton chlorophyll distributions and primary production in the Southern Ocean. J Geophys Res 105(C12):28709–28722

    Article  CAS  Google Scholar 

  • Morel A, Maritorena S (2001) Bio-optical properties of oceanic waters: a reappraisal. J Geophys Res 106(C4):7163–7180

    Article  Google Scholar 

  • Neckel H, Labs D (1984) The solar radiation between 3300 and 12500 Å. Solar Phys 90:205–258

    Article  CAS  Google Scholar 

  • Orsi AH, WhitWorth T III, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic circumpolar current. Deep Sea Res 42:641–673

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, p 173

    Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Satoh H, Yamaguchi Y, Kokubun N, Aruga Y (1985) Application of infrared absorption spectrometry for measuring photosynthetic production of phytoplankton by the stable 13C isotope method. La Mer 23:171–176

    CAS  Google Scholar 

  • Smith WO Jr, Nelson DM (1985) Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science 227:163–166

    Article  CAS  PubMed  Google Scholar 

  • Sokolov S, Rintoul SR (2002) Structure of Southern Ocean fronts at 140°E. J Mar Syst 37:151–184

    Article  Google Scholar 

  • Suzuki R, Ishimaru T (1990) An improved method for the determination of phytoplankton chlorophyll using N, N-Dimethylformamide. J Oceanogr Soc Japan 46:190–194

    Article  CAS  Google Scholar 

  • Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res II 49:1601–1622

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Distributed Active Archive Center (DAAC) at the Goddard Space Flight Center for the production and distribution of satellite data. Thanks are also due to the captain and crews of the T/V Umitaka-Maru for their cooperation during the cruises. This work was supported in part by the JARE STAGE program, JSPS (KAKENHI 19255014 and 18067003), CEAMARC and JAXA GCOM-C program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Hirawake.

Additional information

Satellite primary productivity model for the Southern Ocean.

Appendix

Appendix

To estimate PP eu using satellite data, a ph(λ) was derived by the Quasi-analytical algorithm (QAA) (Lee et al. 2002). Steps of the QAA are shown in Table 3. Appearance of the table and symbols are almost according to the original, thus a ph(λ) is written as a φ(λ). See Table 1 of Lee et al. (2002) concerning other symbols. Adjusted part is only Step 2 and coefficients of the math formula at the step are almost same as original values:

Table 3 Steps of the QAA (Lee et al. 2002) tuned to the Southern Ocean
$$ a\left( { 5 5 5} \right) = 0.0 5 9 7+ 0. 2 1 { }[{ \exp }( - 2. 3- 1. 1\rho + 0. 3 4\rho^{ 2} ) - 0.0 1 $$
(13)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirawake, T., Takao, S., Horimoto, N. et al. A phytoplankton absorption-based primary productivity model for remote sensing in the Southern Ocean. Polar Biol 34, 291–302 (2011). https://doi.org/10.1007/s00300-010-0949-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-010-0949-y

Keywords

Navigation