Skip to main content
Log in

Plants and global warming: challenges and strategies for a warming world

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key Message

In this review, we made an attempt to create a holistic picture of plant response to a rising temperature environment and its impact by covering all aspects from temperature perception to thermotolerance. This comprehensive account describing the molecular mechanisms orchestrating these responses and potential mitigation strategies will be helpful for understanding the impact of global warming on plant life.

Abstract

Organisms need to constantly recalibrate development and physiology in response to changes in their environment. Climate change-associated global warming is amplifying the intensity and periodicity of these changes. Being sessile, plants are particularly vulnerable to variations happening around them. These changes can cause structural, metabolomic, and physiological perturbations, leading to alterations in the growth program and in extreme cases, plant death. In general, plants have a remarkable ability to respond to these challenges, supported by an elaborate mechanism to sense and respond to external changes. Once perceived, plants integrate these signals into the growth program so that their development and physiology can be modulated befittingly. This multifaceted signaling network, which helps plants to establish acclimation and survival responses enabled their extensive geographical distribution. Temperature is one of the key environmental variables that affect all aspects of plant life. Over the years, our knowledge of how plants perceive temperature and how they respond to heat stress has improved significantly. However, a comprehensive mechanistic understanding of the process still largely elusive. This review explores how an increase in the global surface temperature detrimentally affects plant survival and productivity and discusses current understanding of plant responses to high temperature (HT) and underlying mechanisms. We also highlighted potential resilience attributes that can be utilized to mitigate the impact of global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acevedo M, Pixley K, Zinyengere N, Meng S, Tufan H, Cichy K, Bizikova L, Isaacs K, Ghezzi-Kopel K, Porciello J (2020) A scoping review of adoption of climate-resilient crops by small-scale producers in low- and middle-income countries. Nat Plants 6:1231–1241

    Article  PubMed  PubMed Central  Google Scholar 

  • Aidoo MK, Bdolach E, Fait A, Lazarovitch N, Rachmilevitch S (2016) Tolerance to high soil temperature in foxtail millet (Setaria italica L.) is related to shoot and root growth and metabolism. Plant Physiol Biochem 106:73–81

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1344

    Article  PubMed  PubMed Central  Google Scholar 

  • Asseng S, Ewert F, Martre P et al (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147

    Article  Google Scholar 

  • Bahuguna RN, Jagadish KSV (2015) Temperature regulation of plant phenological development. Environ Exp Bot 111:83–90

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI (2019) Genetic strategies for improving crop yields. Nature 575:109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian S, Sureshkumar S, Lempe J, Weigel D (2006) Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet 2:0980–0989

    Article  CAS  Google Scholar 

  • Balazadeh S (2022) A ‘hot’ cocktail: the multiple layers of thermomemory in plants. Curr Opin Plant Biol 65:1–9

    Article  Google Scholar 

  • Balcerowicz M (2020) PHYTOCHROME-INTERACTING FACTORS at the interface of light and temperature signalling. Physiol Plant 169:347–356

    Article  CAS  PubMed  Google Scholar 

  • Balla K, Karsai I, Bónis P, Kiss T, Berki Z, Horváth Á, Mayer M, Bencze S, Veisz O (2019) Heat stress responses in a large set of winter wheat cultivars (Triticum aestivum L.) depend on the timing and duration of stress. PLoS ONE 14:1–20

    Article  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Bellstaedt J, Trenner J, Lippmann R, Poeschl Y, Zhang X, Friml J, Quint M, Delkera C (2019) A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiol 180:757–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben MS, Soba D, Zhou B, Loladze I, Morales F, Aranjuelo I (2021) Climate change, crop yields, and grain quality of C3 cereals: a meta-analysis of [CO2], temperature, and drought effects. Plants 10(6):1052. https://doi.org/10.3390/plants10061052

    Article  CAS  Google Scholar 

  • Benson DO, Dirmeyer PA (2021) Characterizing the relationship between temperature and soil moisture extremes and their role in the exacerbation of heat waves over the contiguous United States. J Clim 34:2175–2187

    Article  Google Scholar 

  • Bernardo-García S, de Lucas M, Martínez C, Espinosa-Ruiz A, Davière JM, Prat S (2014) BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Dev 28:1681–1694

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhadouriya SL, Mehrotra S, Basantani MK, Loake GJ, Mehrotra R (2021) Role of chromatin architecture in plant stress responses: an update. Front Plant Sci 11:1–22

    Article  Google Scholar 

  • Bi H, Zhao Y, Li H, Liu W (2020) Wheat heat shock factor tahsfa6f increases aba levels and enhances tolerance to multiple abiotic stresses in transgenic plants. Int J Mol Sci 21:1–16

    Article  Google Scholar 

  • Bielach A, Hrtyan M, Tognetti VB (2017) Plants under stress: involvement of auxin and cytokinin. Int J Mol Sci 18:2–29

    Article  Google Scholar 

  • Boehlein SK, Liu P, Webster A et al (2019) Effects of long-term exposure to elevated temperature on Zea mays endosperm development during grain fill. Plant J 99:23–40

    Article  CAS  PubMed  Google Scholar 

  • Bourgine B, Guihur A (2021) Heat shock signaling in land plants: from plasma membrane sensing to the transcription of small heat shock proteins. Front Plant Sci 12:1–10

    Article  Google Scholar 

  • Braun DM, Washburn JD, Wood JD (2023) Enhancing the resilience of plant systems to climate change. J Exp Bot 74:2787–2789

    Article  CAS  PubMed  Google Scholar 

  • Brower-Toland B, Shyu C, Vega-Sanchez ME, Slewinski TL (2023) Pedigree or identity? How genome editing can fundamentally change the path for crop development. J Exp Bot 74:2794–2798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brumos J, Robles LM, Yun J, Vu TC, Jackson S, Alonso JM, Stepanova AN (2018) Local auxin biosynthesis is a key regulator of plant development. Dev Cell 47:306–318.e5

    Article  CAS  PubMed  Google Scholar 

  • Casal JJ, Balasubramanian S (2019) Thermomorphogenesis. Annu Rev Plant Biol 70:321–346

    Article  CAS  PubMed  Google Scholar 

  • Casal JJ, Qüesta JI (2018) Light and temperature cues: multitasking receptors and transcriptional integrators. New Phytol 217:1029–1034

    Article  PubMed  Google Scholar 

  • Cerný M, Jedelský PL, Novák J, Schlosser A, Brzobohatý B (2014) Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. Plant Cell Environ 37:1641–1655

    Article  PubMed  Google Scholar 

  • Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4:287–291

    Article  Google Scholar 

  • Chan-Schaminet KY, Baniwal SK, Bublak D, Nover L, Scharf KD (2009) Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression. J Biol Chem 284:20848–20857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Begcy K, Liu K, Folsom JJ, Wang Z, Zhang C, Walia H (2016) Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity. Plant Physiol 171:606–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Horton RM, Bader DA, Lesk C, Jiang L, Jones B, Zhou L, Chen X, Bi J, Kinney PL (2017) Impact of climate change on heat-related mortality in Jiangsu Province, China. Environ Pollut 224:317–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung BYW, Balcerowicz M, Di Antonio M, Jaeger KE, Geng F, Franaszek K, Marriott P, Brierley I, Firth AE, Wigge PA (2020) An RNA thermoswitch regulates daytime growth in Arabidopsis. Nature Plants 6:522–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke SM, Mur LAJ, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38:432–447

    Article  CAS  PubMed  Google Scholar 

  • Cox DTC, Maclean IMD, Gardner AS, Gaston KJ (2020) Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Glob Change Biol 26:7099–7111

    Article  Google Scholar 

  • Cui X, Zheng Y, Lu Y, Issakidis-Bourguet E, Zhou DX (2021) Metabolic control of histone demethylase activity involved in plant response to high temperature. Plant Physiol 185:1813–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang FF, Wang YN, Yu L et al (2013) CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant, Cell Environ 36:757–774

    Article  CAS  PubMed  Google Scholar 

  • de Vries J, Ischebeck T (2020) Ties between stress and lipid droplets pre-date seeds. Trends Plant Sci 25:1203–1214

    Article  PubMed  Google Scholar 

  • de Zélicourt A, Synek L, Saad MM et al (2018) Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production. PLoS Genet 14(3):e1007273. https://doi.org/10.1371/journal.pgen.1007273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Shi Y, Yang S (2020) Molecular regulation of plant responses to environmental temperatures. Mol Plant 13:544–564

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Dobrá J, Černý M, Štorchová H et al (2015) The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Sci 231:52–61

    Article  PubMed  Google Scholar 

  • Escandón M, Cañal MJ, Pascual J, Pinto G, Correia B, Amaral J, Meijón M (2016) Integrated physiological and hormonal profile of heat-induced thermotolerance in Pinus radiata. Tree Physiol 36:63–77

    Article  PubMed  Google Scholar 

  • Escandón M, Meijón M, Valledor L, Pascual J, Pinto G, Cañal MJ (2018) Metabolome integrated analysis of high-temperature response in Pinus radiata. Front Plant Sci 9:485. https://doi.org/10.3389/fpls.2018.00485

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Saud S et al (2016) A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Hou M, Si P, Sun H, Zhang K, Bai Z, Wang G, Li C, Liu L, Zhang Y (2022) Response of root and root hair phenotypes of cotton seedlings under high temperature revealed with RhizoPot. Front Plant Sci 13:1007145. https://doi.org/10.3389/fpls.2022.1007145

    Article  PubMed  PubMed Central  Google Scholar 

  • Feraru E, Feraru MI, Barbez E, Waidmann S, Sun L, Gaidora A, Kleine-Vehn J (2019) PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proc Natl Acad Sci U S A 116:3893–3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson JN, Tidy AC, Murchie EH, Wilson ZA (2021) The potential of resilient carbon dynamics for stabilizing crop reproductive development and productivity during heat stress. Plant Cell Environ 44:2066–2089

    Article  CAS  PubMed  Google Scholar 

  • Fiorucci AS, Galvão VC, Ince YÇ, Boccaccini A, Goyal A, Allenbach Petrolati L, Trevisan M, Fankhauser C (2020) PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings. New Phytol 226:50–58

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA, Lee SH, Patel D et al (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci U S A 108:20231–20235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich T, Oberkofler V, Trindade I et al (2021) Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nat Commun 12:3426. https://doi.org/10.1038/s41467-021-23786-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaillochet C, Burko Y, Platre MP, Zhang L, Simura J, Willige BC, Kumar SV, Ljung K, Chory J, Busch W (2020) HY5 and phytochrome activity modulate shoot-to-root coordination during thermomorphogenesis in Arabidopsis. Development 147(24):dev192625. https://doi.org/10.1242/dev.192625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Wang MJ, Wang JJ, Lu HP, Liu JX (2022) bZIP17 regulates heat stress tolerance at reproductive stage in Arabidopsis. aBIOTECH 3:1–11. https://doi.org/10.1007/s42994-021-00062-1

    Article  CAS  PubMed  Google Scholar 

  • Giri A, Heckathorn S, Mishra S, Krause C (2017a) Heat stress decreases levels of nutrient-uptake and -assimilation proteins in tomato roots. Plants 6:443–448

    Article  Google Scholar 

  • Giri MK, Singh N, Banday ZZ, Singh V, Ram H, Singh D, Chattopadhyay S, Nandi AK (2017b) GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana. Plant J 91:802–815

    Article  CAS  PubMed  Google Scholar 

  • González-García MP, Conesa CM, Lozano-Enguita A et al (2023) Temperature changes in the root ecosystem affect plant functionality. Plant Commun 4:100514

    Article  PubMed  Google Scholar 

  • Gray WM, Östin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci U S A 95:7197–7202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH (2016) The plant heat stress transcription factors (HSFS): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7:114. https://doi.org/10.3389/fpls.2016.00114

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahm J, Kim K, Qiu Y, Chen M (2020) Increasing ambient temperature progressively disassemble Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities. Nat Commun 11:1660. https://doi.org/10.1038/s41467-020-15526-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han SH, Park YJ, Park CM (2019) Light primes the thermally induced detoxification of reactive oxygen species during development of thermotolerance in Arabidopsis. Plant Cell Physiol 60:230–241

    Article  PubMed  Google Scholar 

  • Han SH, Park YJ, Park CM (2020) HOS1 activates DNA repair systems to enhance plant thermotolerance. Nature Plants 6:1439–1446

    Article  CAS  PubMed  Google Scholar 

  • Hanzawa T, Shibasaki K, Numata T, Kawamura Y, Gaude T, Rahman A (2013) Cellular auxin homeostasis under high temperature is regulated through a SORTING NEXIN1-dependent endosomal trafficking pathway. Plant Cell 25:3424–3433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes S, Schachtschabel J, Mishkind M, Munnik T, Arisz SA (2021) Hot topic: thermosensing in plants. Plant Cell Environ 44:2018–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heckathorn SA, Giri A, Mishra S, Bista D (2013) Heat stress and roots. In: Tuteja N, Gill SS (eds) Climate change and plant abiotic stress tolerance. Wiley, Hoboken, NJ, pp 109–136

    Chapter  Google Scholar 

  • Heucken N, Ivanov R (2018) The retromer, sorting nexins and the plant endomembrane protein trafficking. J Cell Sci 131(2):jcs203695. https://doi.org/10.1242/jcs.203695

    Article  CAS  PubMed  Google Scholar 

  • Higashi Y, Okazaki Y, Myouga F, Shinozaki K, Saito K (2015) Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana. Sci Rep 5:10533. https://doi.org/10.1038/srep10533

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang BR, Taylor HM, Mcmichael BL (1991a) Effects of temperature on the development of metaxylem in primary wheat roots and its hydraulic consequence. Ann Bot 67:163–166

    Article  Google Scholar 

  • Huang BR, Taylor HM, McMichael BL (1991b) Growth and development of seminal and crown roots of wheat seedlings as affected by temperature. Environ Exp Bot 31:471–477

    Article  Google Scholar 

  • Huang B, Rachmilevitch S, Xu J (2012) Root carbon and protein metabolism associated with heat tolerance. J Exp Bot 63:3455–3465

    Article  CAS  PubMed  Google Scholar 

  • Huang YC, Niu CY, Yang CR, Jinn TL (2016) The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol 172:1182–1199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Zhao X, Bürger M, Wang Y, Chory J (2021) Two interacting ethylene response factors regulate heat stress response. Plant Cell 33:338–357

    Article  PubMed  Google Scholar 

  • Huot B, Castroverde CDM, Velásquez AC, Hubbard E, Pulman JA, Yao J, Childs KL, Tsuda K, Montgomery BL, He SY (2017) Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis. Nat Commun 8:1808. https://doi.org/10.1038/s41467-017-01674-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurkman WJ, McCue KF, Altenbach SB et al (2003) Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci 164:873–881

    Article  CAS  Google Scholar 

  • Ibañez C, Poeschl Y, Peterson T, Bellstädt J, Denk K, Gogol-Döring A, Quint M, Delker C (2017) Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana. BMC Plant Biol 17(1):114. https://doi.org/10.1186/s12870-017-1068-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibañez C, Delker C, Martinez C et al (2018) Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1. Curr Biol 28:303-310.e3

    Article  PubMed  Google Scholar 

  • Jagadish SVK (2020) Heat stress during flowering in cereals—effects and adaptation strategies. New Phytol 226:1567–1572

    Article  CAS  PubMed  Google Scholar 

  • Jagadish SVK, Way DA, Sharkey TD (2021) Plant heat stress: concepts directing future research. Plant Cell Environ 44:1992–2005

    Article  CAS  PubMed  Google Scholar 

  • Janda M, Lamparová L, Zubíková A, Burketová L, Martinec J, Krčková Z (2019) Temporary heat stress suppresses PAMP-triggered immunity and resistance to bacteria in Arabidopsis thaliana. Mol Plant Pathol 20:1005–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janet R, Richard W, Tim S, Craig H (2018) How to sustainably feed 10 billion people by 2050, in 21 charts. World Resources Institute. https://www.wri.org

  • Janni M, Gullì M, Maestri E, Marmiroli M, Valliyodan B, Nguyen HT, Marmiroli N, Foyer C (2020) Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. J Exp Bot 71:3780–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jégu T, Veluchamy A, Ramirez-Prado JS et al (2017) The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility. Genome Biol 18:114. https://doi.org/10.1186/s13059-017-1246-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029. https://doi.org/10.3389/fpls.2016.01029

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung JH, Domijan M, Klose C et al (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354:886–889

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Barbosa AD, Hutin S et al (2020) A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 585:256–260

    Article  CAS  PubMed  Google Scholar 

  • Karlova R, Boer D, Hayes S, Testerink C (2021) Root plasticity under abiotic stress. Plant Physiol 187:1057–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato S, Takahashi Y, Fujii Y, Sasaki K, Hirano S, Okajima K, Kodama Y (2021) The photo-thermochemical properties and functions of Marchantia phototropin encoded by an unduplicated gene in land plant evolution. J Photochem Photobiol, B 224:112305

    Article  CAS  PubMed  Google Scholar 

  • Kerbler SM, Wigge PA (2023) Temperature sensing in plants. Annu Rev Plant Biol 74:341–366

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Bilal S, Khan AL, Imran M, Shahzad R, Al-Harrasi A, Al-Rawahi A, Al-Azhri M, Mohanta TK, Lee IJ (2020) Silicon and gibberellins: synergistic function in harnessing ABA signaling and heat stress tolerance in date palm (Phoenix dactylifera L.). Plants 9(5):620. https://doi.org/10.3390/plants9050620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Hwang G, Kim S, Thi TN, Kim H, Jeong J, Kim J, Kim J, Choi G, Oh E (2020) The epidermis coordinates thermoresponsive growth through the phyB-PIF4-auxin pathway. Nat Commun 11:1053. https://doi.org/10.1038/s41467-020-14905-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA (2009) High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19:408–413

    Article  CAS  PubMed  Google Scholar 

  • Kothari A, Lachowiec J (2021) Roles of brassinosteroids in mitigating heat stress damage in cereal crops. Int J Mol Sci 22(5):2706. https://doi.org/10.3390/ijms22052706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354:857–861

    Article  CAS  PubMed  Google Scholar 

  • Kumar SV, Wigge PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140:136–147

    Article  CAS  PubMed  Google Scholar 

  • Kwasniewski M, Daszkowska-Golec A, Janiak A, Chwialkowska K, Nowakowska U, Sablok G, Szarejko I (2016) Transcriptome analysis reveals the role of the root hairs as environmental sensors to maintain plant functions under water-deficiency conditions. J Exp Bot 67:1079–1094

    Article  CAS  PubMed  Google Scholar 

  • Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser MT, Luschnig C (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 3:594–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Mouël C, Forslund A (2017) How can we feed the world in 2050? A review of the responses from global scenario studies. Eur Rev Agric Econ 44:541–591

    Article  Google Scholar 

  • Lee HJ, Jung JH, Cortés Llorca L, Kim SG, Lee S, Baldwin IT, Park CM (2014) FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat Commun 5:5473. https://doi.org/10.1038/ncomms6473

    Article  PubMed  Google Scholar 

  • Lee S, Wang W, Huq E (2021) Spatial regulation of thermomorphogenesis by HY5 and PIF4 in Arabidopsis. Nat Commun 12(1):3656. https://doi.org/10.1038/s41467-021-24018-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legris M, Klose C, Burgie ES, Rojas CC, Neme M, Hiltbrunner A, Wigge PA, Schäfer E, Vierstra RD, Casal JJ (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900

    Article  CAS  PubMed  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    Article  CAS  PubMed  Google Scholar 

  • Li J, Huang Q, Sun M et al (2016) Global DNA methylation variations after short-term heat shock treatment in cultured microspores of Brassica napus cv. Topas. Sci Rep 6:38401. https://doi.org/10.1038/srep38401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Euring D, Cha JY, Lin Z, Lu M, Huang LJ, Kim WY (2021) Plant hormone-mediated regulation of heat tolerance in response to global climate change. Front Plant Sci 11:627969. https://doi.org/10.3389/fpls.2020.627969

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin J-S, Kuo C-C, Yang I-C, Tsai W-A, Shen Y-H, Lin C-C, Liang Y-C, Li Y-C, Kuo Y-W, King Y-C, Lai H-M, Jeng S-T (2018) MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in arabidopsis. Front Plant Sci 9:68. https://doi.org/10.3389/fpls.2018.00068

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling Y, Serrano N, Gao G et al (2018) Thermopriming triggers splicing memory in Arabidopsis. J Exp Bot 69:2659–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipper L, Thornton P, Campbell BM et al (2014) Climate-smart agriculture for food security. Nat Clim Chang 4:1068–1072

    Article  Google Scholar 

  • Liu HC, Charng YY (2012) Acquired thermotolerance independent of heat shock factor A1 (HsfA1), the master regulator of the heat stress response. Plant Signal Behav 7(5):547–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HC, Liao HT, Charng YY (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ 34:738–751

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Feng L, Li J, He Z (2015) Genetic and epigenetic control of plant heat responses. Front Plant Sci 6:267. https://doi.org/10.3389/fpls.2015.00267

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Feng L, Gu X et al (2019) An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res 29:379–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Liu Y, Wang S, Cui Y, Yan D (2022) Heat stress reduces root meristem size via induction of plasmodesmal callose accumulation inhibiting phloem unloading in Arabidopsis. Int J Mol Sci 23(4):2063. https://doi.org/10.3390/ijms23042063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohani N, Singh MB, Bhalla PL (2022) Biological parts for engineering abiotic stress tolerance in plants. Biodes Res 2022:9819314. https://doi.org/10.34133/2022/9819314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Xu H, Chu C, He F, Fang S (2020) High temperature can change root system architecture and intensify root interactions of plant seedlings. Front Plant Sci 11:160. https://doi.org/10.3389/fpls.2020.00160

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo J, Jiang J, Sun S, Wang X (2022) Brassinosteroids promote thermotolerance through releasing BIN2-mediated phosphorylation and suppression of HsfA1 transcription factors in Arabidopsis. Plant Commun 3:100419. https://doi.org/10.1016/j.xplc.2022.100419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch J, Cain M, Frame D, Pierrehumbert R (2021) Agriculture’s contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. Front Sustain Food Syst 4:518039. https://doi.org/10.3389/fsufs.2020.518039

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma D, Li X, Guo Y, Chu J, Fang S, Yan C, Noel JP, Liu H (2016) Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc Natl Acad Sci U S A 113:224–229

    Article  CAS  PubMed  Google Scholar 

  • Macduff JH, Wild A, Hopper MJ, Dhanoa MS (1986) Effects of temperature on parameters of root growth relevant to nutrient uptake: measurements on oilseed rape and barley grown in flowing nutrient solution. Plant Soil 94:321–332

    Article  Google Scholar 

  • Mahmud K, Medlyn BE, Duursma RA, Campany C, De Kauwe MG (2018) Inferring the effects of sink strength on plant carbon balance processes from experimental measurements. Biogeosciences 15:4003–4018

    Article  CAS  Google Scholar 

  • Malerba M, Crosti P, Cerana R (2010) Effect of heat stress on actin cytoskeleton and endoplasmic reticulum of tobacco BY-2 cultured cells and its inhibition by Co2+. Protoplasma 239:23–30

    Article  CAS  PubMed  Google Scholar 

  • Martínez C, Espinosa-Ruíz A, Lucas M, Bernardo-García S, Franco-Zorrilla JM, Prat S (2018) PIF 4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. EMBO J 37(23):e99552. https://doi.org/10.15252/embj.201899552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins S, Montiel-Jorda A, Cayrel A, Huguet S, Le RCP, Ljung K, Vert G (2017) Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat Commun 8(1):309. https://doi.org/10.1038/s41467-017-00355-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merilo E, Yarmolinsky D, Jalakas P, Parik H, Tulva I, Rasulov B, Kilk K, Kollist H (2018) Stomatal VPD response: there is more to the story than ABA. Plant Physiol 176:851–864

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Moore CE, Meacham-Hensold K, Lemonnier P, Slattery RA, Benjamin C, Bernacchi CJ, Lawson T, Cavanagh AP (2021) The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J Exp Bot 72:2822–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales D, Rodríguez P, Dell’Amico J, Nicolás E, Torrecillas A, Sánchez-Blanco MJ (2003) High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol Plant 47:203–208

    Article  Google Scholar 

  • Morita S, Wada H, Matsue Y (2016) Countermeasures for heat damage in rice grain quality under climate change. Plant Prod Sci 19:1–11. https://doi.org/10.1080/1343943X.2015.1128114

    Article  CAS  Google Scholar 

  • Mueller SP, Unger M, Guender L, Fekete A, Mueller MJ (2017) Phospholipid: diacylglycerol acyltransferase-mediated triacylglyerol synthesis augments basal thermotolerance. Plant Physiol 175:486–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagel KA, Kastenholz B, Jahnke S et al (2009) Temperature responses of roots: impact on growth, root system architecture and implications for phenotyping. Funct Plant Biol 36:947–959

    Article  CAS  PubMed  Google Scholar 

  • Nasti RA, Voytas DF (2021) Attaining the promise of plant gene editing at scale. Proc Natl Acad Sci U S A 118:1–6

    Article  Google Scholar 

  • Nazar R, Iqbal N, Umar S (2017) Heat stress tolerance in plants: action of salicylic acid. In: Salicylic acid: a multifaceted hormone. pp 145–161

  • Nievola CC, Carvalho CP, Carvalho V, Rodrigues E (2017) Rapid responses of plants to temperature changes. Temperature 4:371–405

    Article  Google Scholar 

  • Noguchi M, Kodama Y (2022) Temperature sensing in plants: on the dawn of molecular thermosensor research. Plant Cell Physiol 63:737–743

    Article  CAS  PubMed  Google Scholar 

  • Oh E, Zhu JY, Wang ZY (2012) Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol 14:802–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olas JJ, Apelt F, Annunziata MG, John S, Richard SI, Gupta S, Kragler F, Balazadeh S, Mueller-Roeber B (2021) Primary carbohydrate metabolism genes participate in heat-stress memory at the shoot apical meristem of Arabidopsis thaliana. Mol Plant 14:1508–1524

    Article  CAS  PubMed  Google Scholar 

  • Omoarelojie LO, Kulkarni MG, Finnie JF, Van Staden J (2019) Strigolactones and their crosstalk with other phytohormones. Ann Bot 124:749–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pajoro A, Severing E, Angenent GC, Immink RGH (2017) Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants. Genome Biol 18(1):102. https://doi.org/10.1186/s13059-017-1235-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park E, Kim Y, Choi G (2018) Phytochrome B requires PIF degradation and sequestration to induce light responses across a wide range of light conditions. Plant Cell 30:1277–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlů J, Novák J, Koukalová V, Luklová M, Brzobohatý B, Černý M (2018) Cytokinin at the crossroads of abiotic stress signalling pathways. Int J Mol Sci 19(8):2450. https://doi.org/10.3390/ijms19082450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecinka A, Scheid OM, Dinh HQ, Baubec T, Rosa M, Lettner N (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:3118–3129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrella G, Bäurle I, van Zanten M (2022) Epigenetic regulation of thermomorphogenesis and heat stress tolerance. New Phytol 234:1144–1160

    Article  PubMed  Google Scholar 

  • Pham VN, Kathare PK, Huq E (2018) Phytochromes and phytochrome interacting factors. Plant Physiol 176:1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, Cano-Delgado AI (2019) Brassinosteroid signaling in plant development and adaptation to stress. Development 146(5):dev151894

    Article  PubMed  PubMed Central  Google Scholar 

  • Pörtner H-O, Roberts DC, Tignor M et al (2022) Climate change 2022: impacts, adaptation and vulnerability. Working Group II Contribution to the IPCC Sixth Assessment Report

  • Prasad PVV, Pisipati SR, Mutava RN, Tuinstra MR (2008) Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Sci 48:1911–1917

    Article  Google Scholar 

  • Prerostova S, Dobrev PI, Kramna B, Gaudinova A, Knirsch V, Spichal L, Zatloukal M, Vankova R (2020) Heat acclimation and inhibition of cytokinin degradation positively affect heat stress tolerance of Arabidopsis. Front Plant Sci 11:87. https://doi.org/10.3389/fpls.2020.00087

    Article  PubMed  PubMed Central  Google Scholar 

  • Qaseem MF, Qureshi R, Shaheen H (2019) Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress. Sci Rep 9:6955. https://doi.org/10.1038/s41598-019-43477-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Li M, Kim RJA, Moore CM, Chen M (2019) Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nat Commun 10:140. https://doi.org/10.1038/s41467-018-08059-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, Van Zanten M (2016) Molecular and genetic control of plant thermomorphogenesis. Nat Plants 2:15190. https://doi.org/10.1038/nplants.2015.190

    Article  CAS  PubMed  Google Scholar 

  • Ray DK, West PC, Michael C, Gerber JS, Prishchepov AV, Chatterjee S (2019) Climate change has likely already affected global food production. PLoS ONE 14(5):e0217148. https://doi.org/10.1371/journal.pone.0217148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed JW, Wu MF, Reeves PH, Hodgens C, Yadav V, Hayes S, Pierik R (2018) Three auxin response factors promote hypocotyl elongation1,2[open]. Plant Physiol 178:864–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezaul IM, Baohua F, Tingting C, Weimeng F, Caixia Z, Longxing T, Guanfu F (2019) Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets. Physiol Plant 165:644–663

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro C, Hennen-Bierwagen TA, Myers AM, Cline K, Settles AM (2020) Engineering 6-phosphogluconate dehydrogenase improves grain yield in heat-stressed maize. Proc Natl Acad Sci U S A 117:33177–33185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieu I, Twell D, Firon N (2017) Pollen development at high temperature: from acclimation to collapse. Plant Physiol 173:1967–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivero RM, Mittler R, Blumwald E, Zandalinas SI (2022) Developing climate-resilient crops: improving plant tolerance to stress combination. Plant J 109:373–389

    Article  CAS  PubMed  Google Scholar 

  • Sage TL, Bagha S, Lundsgaard-Nielsen V, Branch HA, Sultmanis S, Sage RF (2015) The effect of high temperature stress on male and female reproduction in plants. Field Crop Res 182:30–42

    Article  Google Scholar 

  • Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJM, Goloubinoff P (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21:2829–2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saidi Y, Peter M, Fink A, Cicekli C, Vigh L, Goloubinoff P (2010) Membrane lipid composition affects plant heat sensing and modulates Ca2+-dependent heat shock response. Plant Signal Behav 5:1530–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saidi Y, Finka A, Goloubinoff P (2011) Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phytol 190:556–565

    Article  CAS  PubMed  Google Scholar 

  • Saini N, Nikalje GC, Zargar SM, Suprasanna P (2022) Molecular insights into sensing, regulation and improving of heat tolerance in plants. Plant Cell Rep 41:799–813

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci U S A 103:18822–18827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samakovli D, Roka L, Plitsi PK, Kaltsa I, Daras G, Milioni D, Hatzopoulos P (2020) Active BR signalling adjusts the subcellular localisation of BES1/HSP90 complex formation. Plant Biol 22:129–133

    Article  CAS  PubMed  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119

    Article  CAS  PubMed  Google Scholar 

  • Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, Von Koskull-Döring P (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53:264–274

    Article  CAS  PubMed  Google Scholar 

  • Sedaghatmehr M, Thirumalaikumar VP, Kamranfar I, Marmagne A, Masclaux-Daubresse C, Balazadeh S (2019) A regulatory role of autophagy for resetting the memory of heat stress in plants. Plant Cell Environ 42:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Sezgin Muslu A, Kadioğlu A (2021) The antioxidant defense and glyoxalase systems contribute to the thermotolerance of Heliotropium thermophilum. Funct Plant Biol 48:1241–1253

    Article  CAS  PubMed  Google Scholar 

  • Shahinnia F, Carrillo N, Hajirezaei MR (2021) Engineering climate-change-resilient crops: new tools and approaches. Int J Mol Sci 22(15):7877. https://doi.org/10.3390/ijms22157877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD, Zhang R (2010) High temperature effects on electron and proton circuits of photosynthesis. J Integr Plant Biol 52:712–722

    Article  CAS  PubMed  Google Scholar 

  • Shekhawat K, Saad MM, Sheikh A, Mariappan K, Al-Mahmoudi H, Abdulhakim F, Eida AA, Jalal R, Masmoudi K, Hirt H (2021) Root endophyte induced plant thermotolerance by constitutive chromatin modification at heat stress memory gene loci. EMBO Rep 22(3):e51049. https://doi.org/10.15252/embr.202051049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidaway-Lee K, Costa MJ, Rand DA, Finkenstadt B, Penfield S (2014) Direct measurement of transcription rates reveals multiple mechanisms for configuration of the Arabidopsis ambient temperature response. Genome Biol 15:R45. https://doi.org/10.1186/gb-2014-15-3-r45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simkin AJ, López-Calcagno PE, Raines CA (2019) Feeding the world: improving photosynthetic efficiency for sustainable crop production. J Exp Bot 70:1119–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobol S, Chayut N, Nave N, Kafle D, Hegele M, Kaminetsky R, Wünsche JN, Samach A (2014) Genetic variation in yield under hot ambient temperatures spotlights a role for cytokinin in protection of developing floral primordia. Plant Cell Environ 37:643–657

    Article  CAS  PubMed  Google Scholar 

  • Stavang JA, Gallego-Bartolomé J, Gómez MD, Yoshida S, Asami T, Olsen JE, García-Martínez JL, Alabadí D, Blázquez MA (2009) Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J 60:589–601

    Article  CAS  PubMed  Google Scholar 

  • Sugio A, Dreos R, Aparicio F, Maule AJ (2009) The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. Plant Cell 21:642–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Fan XY, Cao DM et al (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Qi L, Li Y, Chu J, Li C (2012) PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet 8(3):e1002594. https://doi.org/10.1371/journal.pgen.1002594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suri SS, Dhindsa RS (2008) A heat-activated MAP kinase (HAMK) as a mediator of heat shock response in tobacco cells. Plant Cell Environ 31:218–226

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem 283:9269–9275

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Bassil E, Hamilton JS et al (2016) ABA is required for plant acclimation to a combination of salt and heat stress. PLoS ONE 11(1):e0147625. https://doi.org/10.1371/journal.pone.0147625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talanova VV, Akimova TV, Titov AF (2003) Effect of whole plant and local heating on the ABA content in cucumber seedling leaves and roots and on their heat tolerance. Russ J Plant Physiol 50:90–94

    Article  CAS  Google Scholar 

  • Tasset C, Singh Yadav A, Sureshkumar S, Singh R, van der Woude L, Nekrasov M, Tremethick D, van Zanten M, Balasubramanian S (2018) POWERDRESS-mediated histone deacetylation is essential for thermomorphogenesis in Arabidopsis thaliana. PLoS Genet 14(3):e1007280. https://doi.org/10.1371/journal.pgen.1007280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian X, Wang F, Zhao Y et al (2020) Heat shock transcription factor A1b regulates heat tolerance in wheat and Arabidopsis through OPR3 and jasmonate signalling pathway. Plant Biotechnol J 18:1109–1111

    Article  PubMed  Google Scholar 

  • Tiwari M, Kumar R, Min D, Jagadish SVK (2022) Genetic and molecular mechanisms underlying root architecture and function under heat stress—a hidden story. Plant Cell Environ 45:771–788

    Article  CAS  PubMed  Google Scholar 

  • Todorov DT, Karanov EN, Smith AR, Hall MA (2003) Chlorophyllase activity and chlorophyll content in wild type and eti 5 mutant of Arabidopsis thaliana subjected to low and high temperatures. Biol Plant 46:633–636

    Article  CAS  Google Scholar 

  • Tonsor SJ, Scott C, Boumaza I, Liss TR, Brodsky JL, Vierling E (2008) Heat shock protein 101 effects in A. thaliana: genetic variation, fitness and pleiotropy in controlled temperature conditions. Mol Ecol 17:1614–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda M, Seki M (2020) Histone modifications form epigenetic regulatory networks to regulate abiotic stress response1[OPEN]. Plant Physiol 182:15–26

    Article  CAS  PubMed  Google Scholar 

  • ul Haq S, Khan A, Ali M, Khattak AM, Gai W-X, Zhang H-X, Wei A-M, Gong Z-H (2019) Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. Int J Mol Sci 20(21):5321. https://doi.org/10.3390/ijms20215321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vacca RA, De Pinto MC, Valenti D, Passarella S, Marra E, De Gara L (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco bright-yellow 2 cells. Plant Physiol 134:1100–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Woude LC, Perrella G, Snoek BL et al (2019) HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion. Proc Natl Acad Sci U S A 116:25343–25354

    Article  PubMed  PubMed Central  Google Scholar 

  • van Zanten M, Voesenek LACJ, Peeters AJM, Millenaar FF (2009) Hormone- and light-mediated regulation of heat-induced differential petiole growth in Arabidopsis. Plant Physiol 151:1446–1458

    Article  PubMed  PubMed Central  Google Scholar 

  • van Zanten M, Ai H, Quint M (2021) Plant thermotropism: an underexplored thermal engagement and avoidance strategy. J Exp Bot 72:7414–7420

    Google Scholar 

  • Velichko AK, Petrova NV, Kantidze OL, Razin SV (2012) Dual effect of heat shock on DNA replication and genome integrity. Mol Biol Cell 23:3450–3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma N, Giri SK, Singh G, Gill R, Kumar A (2022) Epigenetic regulation of heat and cold stress responses in crop plants. Plant Gene 29:100351. https://doi.org/10.1111/nph.17970

    Article  CAS  Google Scholar 

  • Volkov RA, Panchuk II, Mullineaux PM, Schöffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61:733–746

    Article  CAS  PubMed  Google Scholar 

  • von Caemmerer S, Evans JR (2015) Temperature responses of mesophyll conductance differ greatly between species. Plant Cell Environ 38:629–637

    Article  Google Scholar 

  • Vu LD, Gevaert K, De Smet I (2019) Feeling the heat: searching for plant thermosensors. Trends Plant Sci 24:210–219

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wall S, Cockram J, Vialet-Chabrand S, Van Rie J, Gallé A, Lawson T (2023) The impact of growth at elevated [CO2] on stomatal anatomy and behavior differs between wheat species and cultivars. J Exp Bot 74:2860–2874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016) HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun 7:10269. https://doi.org/10.1038/ncomms10269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waraich EA, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nutr 12:221–244

    Article  Google Scholar 

  • Wing IS, De Cian E, Mistry MN (2021) Global vulnerability of crop yields to climate change. J Environ Econ Manag 109:102462. https://doi.org/10.1016/j.jeem.2021.102462

    Article  Google Scholar 

  • Wu HC, Jinn TL (2010) Heat shock-triggered Ca2+ mobilization accompanied by pectin methylesterase activity and cytosolic Ca2+ oscillation are crucial for plant thermotolerance. Plant Signal Behav 5:1252–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Cui K, Wang W, Li Q, Fahad S, Hu Q, Huang J, Nie L, Mohapatra PK, Peng S (2017) Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in rice. Front Plant Sci 8:371. https://doi.org/10.3389/fpls.2017.00371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Liu P, Liu Y (2023) Thermosensing and thermal responses in plants. Trends Biochem Sci. https://doi.org/10.1016/j.tibs.2023.08.002

    Article  PubMed  Google Scholar 

  • Yamakawa H, Hakata M (2010) Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant Cell Physiol 51:795–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Wang JM (2008) A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data. Sci China Ser D Earth Sci 51:721–729

    Article  Google Scholar 

  • Yang X, Dong G, Palaniappan K, Mi G, Baskin TI (2017) Temperature-compensated cell production rate and elongation zone length in the root of Arabidopsis thaliana. Plant Cell Environ 40:264–276

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Gu X, Ding M, Lu W, Lu D (2018) Heat stress during grain filling affects activities of enzymes involved in grain protein and starch synthesis in waxy maize. Sci Rep 8(1):15665. https://doi.org/10.1038/s41598-018-33644-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Machin F, Wang S, Saplaoura E, Kragler F (2023) Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks. Nat Biotechnol 41:958–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh CH, Kaplinsky NJ, Hu C, Charng YY (2012) Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci 195:10–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Ohama N, Nakajima J et al (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics 286:321–332

    Article  CAS  PubMed  Google Scholar 

  • Zafar K, Sedeek KEM, Rao GS, Khan MZ, Amin I, Kamel R, Mukhtar Z, Zafar M, Mansoor S, Mahfouz MM (2020) Genome editing technologies for rice improvement: progress, prospects, and safety concerns. Front Genome Edit 2:5. https://doi.org/10.3389/fgeed.2020.00005

    Article  Google Scholar 

  • Zandalinas SI, Fichman Y, Devireddy AR, Sengupta S, Azad RK, Mittler R (2020) Systemic signaling during abiotic stress combination in plants. Proc Natl Acad Sci U S A 117:13810–13820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zha P, Jing Y, Xu G, Lin R (2017) PICKLE chromatin-remodeling factor controls thermosensory hypocotyl growth of Arabidopsis. Plant, Cell Environ 40:2426–2436

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Li G, Chen T, Feng B, Fu W, Yan J, Islam MR, Jin Q, Tao L, Fu G (2018) Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice 11(1):14. https://doi.org/10.1186/s12284-018-0206-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang X, Zhuang L, Gao Y, Huang B (2019) Abscisic acid mediation of drought priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) and Arabidopsis. Physiol Plant 167:488–501

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li Y, Han B, Liu A, Xu W (2022) Integrated lipidomic and transcriptomic analysis reveals triacylglycerol accumulation in castor bean seedlings under heat stress. Ind Crops Prod 180:114702. https://doi.org/10.1016/j.indcrop.2022.114702

    Article  CAS  Google Scholar 

  • Zhao C, Liu B, Piao S et al (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci U S A 114:9326–9331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao LS, Huokko T, Wilson S, Simpson DM, Wang Q, Ruban AV, Mullineaux CW, Zhang YZ, Liu LN (2020) Structural variability, coordination and adaptation of a native photosynthetic machinery. Nat Plants 6:869–882

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Lu Z, Wang L, Jin B (2021) Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics. Int J Mol Sci 22(1):117. https://doi.org/10.3390/ijms22010117

    Article  CAS  Google Scholar 

  • Zhou J, Xia XJ, Zhou YH, Shi K, Chen Z, Yu JQ (2014) RBOH1-dependent H2O2 production and subsequent activation of MPK1/2 play an important role in acclimation-induced cross-tolerance in tomato. J Exp Bot 65:595–607

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Fonseca De Lima CF, De Smet I (2021) The heat is on: how crop growth, development, and yield respond to high temperature. J Exp Bot 72:7359–7373

    CAS  Google Scholar 

  • Zhu Z, Esche F, Babben S, Trenner J, Serfling A, Pillen K, Maurer A, Quint M (2022) An exotic allele of barley EARLY FLOWERING 3 contributes to developmental plasticity at elevated temperatures. J Exp Bot 74:2912–2931

    Article  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the reviewers and the editor for their contribution in improving this manuscript.

Funding

This work was supported by the Ramalingaswami fellowship program, Department of Biotechnology (DBT), Government of India to JS. PS is supported by a PhD fellowship from University grants commission (UGC), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

JS wrote the manuscript with inputs from PS. PS prepared the figures.

Corresponding author

Correspondence to Jose Sebastian.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Communicated by Wusheng Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seth, P., Sebastian, J. Plants and global warming: challenges and strategies for a warming world. Plant Cell Rep 43, 27 (2024). https://doi.org/10.1007/s00299-023-03083-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00299-023-03083-w

Keywords

Navigation