Skip to main content
Log in

The evolving views of the simplest pectic polysaccharides: homogalacturonan

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Pectin is an important component of cell wall polysaccharides and is important for normal plant growth and development. As a major component of pectin in the primary cell wall, homogalacturonan (HG) is a long-chain macromolecular polysaccharide composed of repeated α-1,4-D-GalA sugar units. At the same time, HG is synthesized in the Golgi apparatus in the form of methyl esterification and acetylation. It is then secreted into the plasmodesmata, where it is usually demethylated by pectin methyl esterase (PME) and deacetylated by pectin acetylase (PAE). The synthesis and modification of HG are involved in polysaccharide metabolism in the cell wall, which affects the structure and function of the cell wall and plays an important role in plant growth and development. This paper mainly summarizes the recent research on the biosynthesis, modification and the roles of HG in plant cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akita K, Ishimizu T, Tsukamoto T, Hase AS (2002) Successive glycosyltransfer activity and enzymatic characterization of pectic polygalacturonate 4-alpha-galacturonosyltransferase solubilized from pollen tubes of petunia axillaris using pyridylaminated oligogalacturonates as substrates. Plant Physiol 130:374–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amsbury S, Hunt L, Elhaddad N, Baillie A, Lundgren M, Verhertbruggen Y, Scheller HV, Knox JP, Fleming AJ, Gray JE (2016) Stomatal function requires pectin de-methyl-esterification of the guard cell wall. Curr Biol 26:2899–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An SH, Sohn KH, Choi HW, Hwang IS, Lee SC, Hwang BK (2008) Pepper pectin methylesterase inhibitor protein capmei1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta 228:61–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An SH, Choi HW, Hong JK, Hwang BK (2009) Regulation and function of the pepper pectin methylesterase inhibitor (capmei1) gene promoter in defense and ethylene and methyl jasmonate signaling in plants. Planta 230:1223–1237

    Article  CAS  PubMed  Google Scholar 

  • Andres-Robin A, Reymond MC, Dupire A, Battu V, Dubrulle N, Mouille G, Lefebvre V, Pelloux J, Boudaoud A, Traas J, Scutt CP, Moneger F (2018) Evidence for the regulation of gynoecium morphogenesis by ETTIN via cell wall dynamics. Plant Physiol 178:1222–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atmodjo MA, Sakuragi Y, Zhu X, Burrell AJ, Mohanty SS, Atwood JA 3rd, Orlando R, Scheller HV, Mohnen D (2011) Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan:galacturonosyltransferase complex. Proc Natl Acad Sci U S A 108:20225–20230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Annu Rev Plant Biol 64:747–779

    Article  CAS  PubMed  Google Scholar 

  • Barnes WJ, Zelinsky E, Anderson CT (2021) Polygalacturonase activity promotes aberrant cell separation in the quasimodo2 mutant of Arabidopsis thaliana. Cell Surf 8:100069

    Article  PubMed  PubMed Central  Google Scholar 

  • Bethke G, Thao A, Xiong G, Li B, Soltis NE, Hatsugai N, Hillmer RA, Katagiri F, Kliebenstein DJ, Pauly M, Glazebrook J (2016) Pectin biosynthesis is critical for cell wall integrity and immunity in Arabidopsis thaliana. Plant Cell 28:537–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswal AK, Atmodjo MA, Li M, Baxter HL, Yoo CG, Pu Y, Lee YC, Mazarei M, Black IM, Zhang JY, Ramanna H, Bray AL, King ZR, LaFayette PR, Pattathil S, Donohoe BS, Mohanty SS, Ryno D, Yee K, Thompson OA, Rodriguez M Jr, Dumitrache A, Natzke J, Winkeler K, Collins C, Yang X, Tan L, Sykes RW, Gjersing EL, Ziebell A, Turner GB, Decker SR, Hahn MG, Davison BH, Udvardi MK, Mielenz JR, Davis MF, Nelson RS, Parrott WA, Ragauskas AJ, Neal Stewart C, Mohnen D (2018) Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nat Biotechnol 36:249–257

    Article  CAS  PubMed  Google Scholar 

  • Bosch M, Hepler PK (2006) Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. Planta 223:736–745

    Article  CAS  PubMed  Google Scholar 

  • Bouton S, Leboeuf E, Mouille G, Leydecker MT, Talbotec J, Granier F, Lahaye M, Höfte H, Truong HN (2002) QUASIMODO1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell 14:2577–2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bui M, Lim N, Sijacic P, Liu Z (2011) LEUNIG_HOMOLOG and LEUNIG regulate seed mucilage extrusion in Arabidopsis. J Integr Plant Biol 53:399–408

    Article  CAS  PubMed  Google Scholar 

  • Cação SM, Leite TF, Budzinski IG, dos Santos TB, Scholz MB, Carpentieri-Pipolo V, Domingues DS, Vieira LG, Pereira LF (2012) Gene expression and enzymatic activity of pectin methylesterase during fruit development and ripening in Coffea arabica L. Genet Mol Res 11:3186–3197

    Article  PubMed  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  CAS  PubMed  Google Scholar 

  • Cantu D, Vicente AR, Labavitch JM, Bennett AB, Powell AL (2008) Strangers in the matrix: plant cell walls and pathogen susceptibility. Trends Plant Sci 13:610–617

    Article  CAS  PubMed  Google Scholar 

  • Chiniquy D, Underwood W, Corwin J, Ryan A, Szemenyei H, Lim CC, Stonebloom SH, Birdseye DS, Vogel J, Kliebenstein D, Scheller HV, Somerville S (2019) PMR5, an acetylation protein at the intersection of pectin biosynthesis and defense against fungal pathogens. Plant J 100:1022–1035

    Article  CAS  PubMed  Google Scholar 

  • Del Corpo D, Fullone MR, Miele R, Lafond M, Pontiggia D, Grisel S, Kieffer-Jaquinod S, Giardina T, Bellincampi D, Lionetti V (2020) AtPME17 is a functional Arabidopsis thaliana pectin methylesterase regulated by its PRO region that triggers PME activity in the resistance to Botrytis cinerea. Mol Plant Pathol 21:1620–1633

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding A, Tang X, Yang D, Wang M, Ren A, Xu Z, Hu R, Zhou G, O’Neill M, Kong Y (2021) ERF4 and MYB52 transcription factors play antagonistic roles in regulating homogalacturonan de-methylesterification in Arabidopsis seed coat mucilage. Plant Cell 33:381–403

    Article  PubMed  Google Scholar 

  • Doong RL, Mohnen D (1998) Solubilization and characterization of a galacturonosyltransferase that synthesizes the pectic polysaccharide homogalacturonan. Plant J 13:363–374

    Article  CAS  Google Scholar 

  • Du J, Kirui A, Huang S, Wang L, Barnes WJ, Kiemle SN, Zheng Y, Rui Y, Ruan M, Qi S, Kim SH, Wang T, Cosgrove DJ, Anderson CT, Xiao C (2020) Mutations in the pectin methyltransferase QUASIMODO2 influence cellulose biosynthesis and wall integrity in Arabidopsis. Plant Cell 32:3576–3597

  • Duan Q, Liu M, Kita D, Jordan S, Yeh F, Yvon R, Carpenter H, Federico A, GarciaValencia L, Eyles S, Wang C, Wu H (2020) FERONIA controls pectin- and nitric oxide-mediated male–female interaction. Nature 579:561–566

  • Ezquer I, Mizzotti C, Nguema-Ona E, Gotte M, Beauzamy L, Viana VE, Dubrulle N, Costa de Oliveira A, Caporali E, Koroney AS, Boudaoud A, Driouich A, Colombo L (2016) The developmental regulator SEEDSTICK controls structural and mechanical properties of the Arabidopsis seed coat. Plant Cell 28:2478–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis KE, Lam SY, Copenhaver GP (2006) Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol 142:1004–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaffe J, Tiznado ME, Handa AK (1997) Characterization and functional expression of a ubiquitously expressed tomato pectin methylesterase. Plant Physiol 114:1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng X, Horst WJ, Golz JF, Lee JE, Ding Z, Yang ZB (2017) LEUNIG_HOMOLOG transcriptional co-repressor mediates aluminium sensitivity through PECTIN METHYLESTERASE46-modulated root cell wall pectin methylesterification in Arabidopsis. Plant J 90:491–504

    Article  CAS  PubMed  Google Scholar 

  • Giannoutsou E, Sotiriou P, Nikolakopoulou TL, Galatis B, Apostolakos P (2020) Callose and homogalacturonan epitope distribution in stomatal complexes of Zea mays and Vigna sinensis. Protoplasma 257:141–156

    Article  CAS  PubMed  Google Scholar 

  • Gómez MD, Renau-Morata B, Roque E, Polaina J, Beltrán JP, Cañas LA (2013) PsPMEP, a pollen-specific pectin methylesterase of pea (Pisum sativum L.). Plant Reprod 26:245–254

    Article  PubMed  Google Scholar 

  • Gou JY, Miller LM, Hou G, Yu XH, Chen XY, Liu CJ (2012) Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. Plant Cell 24:50–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guénin S, Mareck A, Rayon C, Lamour R, Assoumou Ndong Y, Domon JM, Sénéchal F, Fournet F, Jamet E, Canut H, Percoco G, Mouille G, Rolland A, Rustérucci C, Guerineau F, Van Wuytswinkel O, Gillet F, Driouich A, Lerouge P, Gutierrez L, Pelloux J (2011) Identification of pectin methylesterase 3 as a basic pectin methylesterase isoform involved in adventitious rooting in Arabidopsis thaliana. New Phytol 192:114–126

    Article  PubMed  Google Scholar 

  • Haas KT, Wightman R, Meyerowitz EM, Peaucelle A (2020) Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science 367:1003–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hongo S, Sato K, Yokoyama R, Nishitani K (2012) Demethylesterification of the primary wall by PECTIN METHYLESTERASE35 provides mechanical support to the Arabidopsis stem. Plant Cell 24:2624–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, DeBowles D, Esfandiari E, Dean G, Carpita NC, Haughn GW (2011) The Arabidopsis transcription factor LUH/MUM1 is required for extrusion of seed coat mucilage. Plant Physiol 156:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YC, Wu HC, Wang YD, Liu CH, Lin CC, Luo DL, Jinn TL (2017) PECTIN METHYLESTERASE34 contributes to heat tolerance through its role in promoting stomatal movement. Plant Physiol 174:748–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii T (2002) A sensitive and rapid bioassay of homogalacturonan synthase using 2-aminobenzamide-labeled oligogalacturonides. Plant Cell Physiol 43:1386–1389

    Article  CAS  PubMed  Google Scholar 

  • Jackson C, Dreaden T, Theobld L, Tran N, Beal T, Eid M, Gao M, Shirely R, Stoffel M, Kumar M, Mohnen D (2007) Pectin induces apoptosis in human prostate cancer cells: correlation of apoptotic function with pectin structure. Glycobiol 17:805–819

    Article  CAS  Google Scholar 

  • Jiang L, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonsson K, Lathe RS, Kierzkowski D, Routier-Kierzkowska A-L, Hamant O, Bhalerao RP (2021) Mechanochemical feedback mediates tissue bending required for seedling emergence. Curr Biol 31:1–11

    Article  Google Scholar 

  • Kong Y, Zhou G, Avci U, Gu X, Jones C, Yin Y, Xu Y, Hahn M (2009) Two poplar glycosyltransferase genes, PdGATL1.1 and PdGATL1.2, are functional orthologs to PARVUS/AtGATL1 in Arabidopsis. Mol Plant 2:1040–1050

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Zhou G, Abdeen AA, Schafhauser J, Richardson B, Atmodjo MA, Jung J, Wicker L, Mohnen D, Western T, Hahn MG (2013) GALACTURONOSYLTRANSFERASE-LIKE5 is involved in the production of Arabidopsis seed coat mucilage. Plant Physiol 163:1203–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong Y, Pena M, Renna L, Avci U, Pattathil S, Tuomiaara S, Li X, Reiter W, Brandizzi F, Hahn MG, Darill A, York W, O’Neill M (2015) A Galac-tose-depleted Xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis. Plant Physiol 167:1296–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Körner E, von Dahl CC, Bonaventure G, Baldwin IT (2009) Pectin methylesterase NaPME1 contributes to the emission of methanol during insect herbivory and to the elicitation of defence responses in Nicotiana attenuata. J Exp Bot 60:2631–2640

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunieda T, Hara-Nishimura I, Demura T, Haughn GW (2020) Arabidopsis FLYING SAUCER 2 functions redundantly with FLY1 to establish normal seed coat mucilage. Plant Cell Physiol 61:308–317

    Article  CAS  PubMed  Google Scholar 

  • Leroux C, Bouton S, Kiefer-Meyer M-C, Fabrice TN, Mareck A, Guénin S, Fournet F, Ringli C, Pelloux J, Driouich A, Lerouge P, Lehner A, Mollet J-C (2015) PECTIN METHYLESTERASE48 is involved in arabidopsis pollen grain germination. Plant Physiol 167:367–380

    Article  CAS  PubMed  Google Scholar 

  • Leśniewska J, Öhman D, Krzesłowska M, Kushwah S, Barciszewska-Pacak M, Kleczkowski LA, Sundberg B, Moritz T, Mellerowicz EJ (2017) Defense responses in aspen with altered pectin methylesterase activity reveal the hormonal inducers of tyloses. Plant Physiol 173:1409–1419

    Article  PubMed  Google Scholar 

  • Levesque-Tremblay G, Pelloux J, Braybrook S, Muller K (2015) Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. Planta 242:791–811

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Huang L, Yu X, Xiong X, Yue X, Liu T, Liang Y, Lv M, Cao J (2017) Characterization of BcMF23a and BcMF23b, two putative pectin methylesterase genes related to pollen development in Brassica campestris ssp. chinensis. Mol Biol Rep 44:139–148

    Article  CAS  PubMed  Google Scholar 

  • Lionetti V, Raiola A, Camardella L, Giovane A, Obel N, Pauly M, Favaron F, Cervone F, Bellincampi D (2007) Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol 143:1871–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lionetti V, Fabri E, De Caroli M, Hansen AR, Willats WG, Piro G, Bellincampi D (2017) Three pectin methylesterase inhibitors protect cell wall integrity for arabidopsis immunity to botrytis. Plant Physiol 173:1844–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Sun Y, Pei Y, Zhang X, Wang P, Li X, Li F, Hou Y (2018) A pectin methylesterase inhibitor enhances resistance to verticillium wilt. Plant Physiol 176:2202–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majewska-Sawka A, Münster A, Rodríguez-García MI (2002) Guard cell wall: immunocytochemical detection of polysaccharide components. J Exp Bot 53:1067–1079

    Article  CAS  PubMed  Google Scholar 

  • Manabe Y, Verhertbruggen Y, Gille S, Harholt J, Chong SL, Pawar PM, Mellerowicz EJ, Tenkanen M, Cheng K, Pauly M, Scheller HV (2013) Reduced wall acetylation proteins play vital and distinct roles in cell wall O-acetylation in Arabidopsis. Plant Physiol 163:1107–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merced A, Renzaglia K (2014) Developmental changes in guard cell wall structure and pectin composition in the moss Funaria: implications for function and evolution of stomata. Ann Bot 114:1001–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller K, Levesque-Tremblay G, Fernandes A, Wormit A, Bartels S, Usadel B, Kermode A (2013) Overexpression of a pectin methylesterase inhibitor in Arabidopsis thaliana leads to altered growth morphology of the stem and defective organ separation. Plant Signal Behav 8:e26464

    Article  PubMed  PubMed Central  Google Scholar 

  • Nafisi M, Stranne M, Fimognari L, Atwell S, Martens HJ, Pedas PR, Hansen SF, Nawrath C, Scheller HV, Kliebenstein DJ, Sakuragi Y (2015) Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses. Front Plant Sci 6:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen HP, Jeong HY, Jeon SH, Kim D, Lee C (2017) Rice pectin methylesterase inhibitor28 (OsPMEI28) encodes a functional PMEI and its overexpression results in a dwarf phenotype through increased pectin methylesterification levels. J Plant Physiol 208:17–25

    Article  CAS  PubMed  Google Scholar 

  • Orfila C, Sørensen SO, Harholt J, Geshi N, Crombie H, Truong HN, Reid JS, Knox JP, Scheller HV (2005) QUASIMODO1 is expressed in vascular tissue of Arabidopsis thaliana inflorescence stems, and affects homogalacturonan and xylan biosynthesis. Planta 222:613–622

    Article  CAS  PubMed  Google Scholar 

  • Orfila C, Degan F, Jørgensen B, Scheller H, Ray P, Ulvskov P (2012) Expression of mung bean pectin acetyl esterase in potato tubers: effect on acetylation of cell wall polymers and tuber mechanical properties. Planta 236:185–196

    Article  CAS  PubMed  Google Scholar 

  • Peaucelle A, Louvet R, Johansen JN, Höfte H, Laufs P, Pelloux J, Mouille G (2008) Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr Biol 18:1943–1948

    Article  CAS  PubMed  Google Scholar 

  • Peaucelle A, Louvet R, Johansen JN, Salsac F, Morin H, Fournet F, Belcram K, Gillet F, Höfte H, Laufs P, Mouille G, Pelloux J (2011) The transcription factor BELLRINGER modulates phyllotaxis by regulating the expression of a pectin methylesterase in Arabidopsis. Development 138:4733–4741

    Article  CAS  PubMed  Google Scholar 

  • Peaucelle A, Braybrook S, Höfte H (2012) Cell wall mechanics and growth control in plants: the role of pectins revisited. Front Plant Sci. 6(3):121. https://doi.org/10.3389/fpls.2012.00121

  • Peaucelle A, Wightman R, Höfte H (2015) The control of growth symmetrybreaking in the Arabidopsis hypocotyl. Curr Biol 25:1746–1752

    Article  CAS  PubMed  Google Scholar 

  • Pelletier S, Van Orden J, Wolf S, Vissenberg K, Delacourt J, Ndong YA, Pelloux J, Bischoff V, Urbain A, Mouille G, Lemonnier G, Renou JP, Höfte H (2010) A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls. New Phytol 188:726–739

    Article  CAS  PubMed  Google Scholar 

  • Pena M, Kong Y, York W, O’Neilla M (2012) A galacturonic acid containing xyloglucan is involved in arabidopsis root hair tip growth. Plant Cell 24:4511–4524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogorelko G, Lionetti V, Fursova O, Sundaram RM, Qi M, Whitham SA, Bogdanove AJ, Bellincampi D, Zabotina OA (2013) Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens. Plant Physiol 162:9–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi J, Wu B, Feng S, Lu S, Guan C, Zhang X, Qiu D, Hu Y, Zhou Y, Li C, Long M, Jiao Y (2017) Mechanical regulation of organ asymmetry in leaves. Nat Plants 3:724–733

    Article  PubMed  Google Scholar 

  • Qu T, Liu R, Wang W, An L, Chen T, Liu G, Zhao Z (2011) Brassinosteroids regulate pectin methylesterase activity and AtPME41 expression in Arabidopsis under chilling stress. Cryobiology 63:111–117

    Article  CAS  PubMed  Google Scholar 

  • Rautengarten C, Usadel B, Neumetzler L, Hartmann J, Büssis D, Altmann T (2008) A subtilisin-like serine protease essential for mucilage release from Arabidopsis seed coats. Plant J 54:466–480

    Article  CAS  PubMed  Google Scholar 

  • Saez-Aguayo S, Ralet MC, Berger A, Botran L, Ropartz D, Marion-Poll A, North HM (2013) PECTIN METHYLESTERASE INHIBITOR6 promotes Arabidopsis mucilage release by limiting methylesterification of homogalacturonan in seed coat epidermal cells. Plant Cell 25:308–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saez-Aguayo S, Rautengarten C, Temple H, Sanhueza D, Ejsmentewicz T, Sandoval-Ibañez O, Doñas D, Parra-Rojas JP, Ebert B, Lehner A, Mollet JC, Dupree P, Scheller HV, Heazlewood JL, Reyes FC, Orellana A (2017) UUAT1 is a golgi-localized UDP-uronic acid transporter that modulates the polysaccharide composition of arabidopsis seed mucilage. Plant Cell 29:129–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheller HV, Doong RL, Mohnen RD (1999) Pectin biosynthesis: a solubilized a1,4-galacturonosyltransferase from tobacco catalyzes the transfer of galacturonic acid from UDP-galacturonic acid onto the non-reducing end of homogalacturonan. Planta 207:512–517

    Article  CAS  Google Scholar 

  • Segonne SM, Bruneau M, Celton JM, Le Gall S, Francin-Allami M, Juchaux M, Laurens F, Orsel M, Renou JP (2014) Multiscale investigation of mealiness in apple: an atypical role for a pectin methylesterase during fruit maturation. BMC Plant Biol 14:375

    Article  PubMed  PubMed Central  Google Scholar 

  • Sénéchal F, Wattier C, Rustérucci C, Pelloux J (2014) Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J Exp Bot 65:5125–5160

    Article  PubMed  PubMed Central  Google Scholar 

  • Sénéchal F, L’Enfant M, Domon JM, Rosiau E, Crépeau MJ, Surcouf O, Esquivel-Rodriguez J, Marcelo P, Mareck A, Guérineau F, Kim HR, Mravec J, Bonnin E, Jamet E, Kihara D, Lerouge P, Ralet MC, Pelloux J, Rayon C (2015) Tuning of pectin methylesterification: pectin methylesterase inhibitor 7 modulates the processive activity of co-expressed pectin methylesterase 3 in a pH-dependent manner. J Biol Chem 290:23320–23335

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi D, Ren A, Tang X, Qi G, Xu Z, Chai G, Hu R, Zhou G, Kong Y (2018) MYB52 negatively regulate pectin demethylesterification. Plant Physiol 176:2737–2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siedlecka A, Wiklund S, Péronne MA, Micheli F, Lesniewska J, Sethson I, Edlund U, Richard L, Sundberg B, Mellerowicz EJ (2008) Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiol 146(2):554–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva-Sanzana C, Celiz-Balboa J, Garzo E, Marcus SE, Parra-Rojas JP, Rojas B, Olmedo P, Rubilar MA, Rios I, Chorbadjian RA, Fereres A, Knox P, Saez-Aguayo S, Blanco-Herrera F (2019) Pectin methylesterases modulate plant homogalacturonan status in defenses against the aphid Myzus persicae. Plant Cell 31:1913–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterling JD, Atmodjo MA, Inwood SE, Kumar Kolli VS, Quigley HF, Hahn MG, Mohnen D (2006) Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proc Natl Acad Sci USA 103:5236–5241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stranne M, Ren Y, Fimognari L, Birdseye D, Yan J, Bardor M, Mollet JC, Komatsu T, Kikuchi J, Scheller HV, Sakuragi Y (2018) TBL10 is required for O-acetylation of pectic rhamnogalacturonan-I in Arabidopsis thaliana. Plant J 96:772–785

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Yuan C, Wang M, Ding A, Chai G, Sun Y, Zhou G, Yang D, Kong Y (2021) MUD1, a RING-v E3 ubiquitin ligase, has an important role in the regulation of pectin methylesterification in Arabidopsis seed coat mucilage. Plant Physiol Biochem 68:230–238

    Article  Google Scholar 

  • Turbant A, Fournet F, Lequart M, Zabijak L, Pageau K, Bouton S, Van Wuytswinkel O (2016) PME58 plays a role in pectin distribution during seed coat mucilage extrusion through homogalacturonan modification. J Exp Bot 67:2177–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voiniciuc C, Dean GH, Griffiths JS, Kirchsteiger K, Hwang YT, Gillett A, Dow G, Western TL, Estelle M, Haughn GW (2013) FLYING SAUCER1 is a transmembrane RING E3 ubiquitin ligase that regulates the degree of pectin methylesterification in Arabidopsis seed mucilage. Plant Cell 25:944–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voiniciuc C, Engle KA, Gunl M, Dieluweit S, Schmidt MH, Yang JY, Moremen KW, Mohnen D, Usadel B (2018) Identification of key enzymes for pectin synthesis in seed mucilage. Plant Physiol 178:1045–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vriesmann L, Petkowwicz C (2013) Highly acetylated pectin from cacao pod husks (Theobroma cacao L.) forms gel. Food Hydrocoll 33:58–65

    Article  CAS  Google Scholar 

  • Wachsman G, Zhang J, Moreno-Risueno MA, Anderson CT, Benfey PN (2020) Cell wall remodeling and vesicle trafficking mediate the root clock in Arabidopsis. Science 370:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker M, Tehseen M, Doblin MS, Pettolino FA, Wilson SM, Bacic A, Golz JF (2011) The transcriptional regulator LEUNIG_HOMOLOG regulates mucilage release from the Arabidopsis testa. Plant Physiol 156:46–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Terpstra EJ (2013) Ubiquitin receptors and protein quality control. J Mol Cell Cardiol 55:73–84

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Xu Z, Ahmed RI, Wang Y, Hu R, Zhou G, Kong Y (2019) Tubby-like Protein 2 regulates homogalacturonan biosynthesis in Arabidopsis seed coat mucilage. Plant Mol Biol 99:421–436

    Article  CAS  PubMed  Google Scholar 

  • Wormit A, Usadel B (2018) The multifaceted role of pectin methylesterase inhibitors (PMEIs). INT J MOL SCI 19:2878–2896

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong X, Zhou D, Xu L, Liu T, Yue X, Liu W, Cao J (2019) BcPME37c is involved in pollen intine formation in Brassica campestris. Biochem Biophys Res Commun 517:63–68

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Wang Y, Wang X, Pei S, Kong Y, Hu R, Zhou G (2020) Transcription Factors BLH2 and BLH4 Regulate Demethylesterification of Homogalacturonan in Seed Mucilage. Plant Physiol 183:96–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, He H, Fang L, Zhang A (2018) Pectin methylesterase31 positively regulates salt stress tolerance in Arabidopsis. Biochem Biophys Res Commun 496:497–501

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Ruan M, Xiang M, Deng A, Du J, Xiao C (2020) Overexpression of a pectin methylesterase gene PtoPME35 from Populus tomentosa influences stomatal function and drought tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 523:416–422

    Article  CAS  PubMed  Google Scholar 

  • Yapo BM, Lerouge P, Thibault JF, Ralet MC (2007) Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II. Carbohyd Polym 69:426–435

    Article  CAS  Google Scholar 

  • Yue X, Lin S, Yu Y, Huang L, Cao J (2018) The putative pectin methylesterase gene, BcMF23a, is required for microspore development and pollen tube growth in Brassica campestris. Plant Cell Rep 37:1003–1009

    Article  CAS  PubMed  Google Scholar 

  • Zhang GY, Feng J, Wu J, Wang XW (2010) (2010) BoPMEI1, a pollen-specific pectin methylesterase inhibitor, has an essential role in pollen tube growth. Planta 231:1323–1334

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang B, Chen Z, Zhang D, Zhang H, Wang H, Zhang Y, Cai D, Liu J, Xiao S, Huo Y, Liu J, Zhang L, Wang M, Liu X, Xue Y, Zhao L, Zhou Y, Chen H (2018) A PECTIN METHYLESTERASE gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility. Nat Commun 9:3678

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Gao Y, Zhang L, Zhou Y (2021) The plant cell wall: biosynthesis, construction, and functions. J Integr Plant Biol 63:251–272

    Article  PubMed  Google Scholar 

  • Zhu X, Tang C, Li Q, Qiao X, Li X, Cai Y, Wang P, Sun Y, Zhang H, Zhang S, Wu J (2021) Characterization of the pectin methylesterase inhibitor gene family in Rosaceae and role of PbrPMEI23/39/41 in methylesterified pectin distribution in pear pollen tube. Planta 53:118

    Article  Google Scholar 

Download references

Funding

This research was financially supported by the National Natural Science Foundation of China (31972860, 32070330), Project of Shandong Natural Science Foundation (ZR2021QC138), and Doctoral foundation project of Qingdao Agricultural University (663/1120071).

Author information

Authors and Affiliations

Authors

Contributions

SG, MW, YK wrote and revised the manuscript. XS and GZ organized tables and pictures. All authors read and approved the manuscript.

Corresponding author

Correspondence to Yingzhen Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Wusheng Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Wang, M., Song, X. et al. The evolving views of the simplest pectic polysaccharides: homogalacturonan. Plant Cell Rep 41, 2111–2123 (2022). https://doi.org/10.1007/s00299-022-02909-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02909-3

Keywords

Navigation