Skip to main content
Log in

Characterization of BcMF23a and BcMF23b, two putative pectin methylesterase genes related to pollen development in Brassica campestris ssp. chinensis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Two homologous genes, Brassica campestris Male Fertility 23a (BcMF23a) and Brassica campestris Male Fertility 23b (BcMF23b), encoding putative pectin methylesterases (PMEs) were isolated from Brassica campestris ssp. chinensis (syn. Brassica rapa ssp. chinensis). These two genes sharing high sequence identity with each other were highly expressed in the fertile flower buds but silenced in the sterile ones of genic male sterile line system (‘Bcajh97-01A/B’). Results of RT-PCR and in situ hybridization suggested that BcMF23a and BcMF23b were pollen-expressed genes, whose transcripts were first detected at the binucleate pollen and maintained throughout to the mature pollen grains. Western blot indicated that both of the putative BcMF23a and BcMF23b proteins are approximately 40 kDa, which exhibited extracellular localization revealed by transient expression analysis in the onion epidermal cells. The promoter of BcMF23a was active specifically in pollen during the late pollen developmental stages, while, in addition to the pollen, BcMF23b promoter drove an extra gene expression in the valve margins, abscission layer at the base of the first true leaves, taproot and lateral roots in seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BcMF23 :

Brassica campestris Male Fertility 23

PME:

Pectin methylesterase

ORF:

Open reading frame

HAP:

Hours after pollination

RT-PCR:

Reverse transcript polymerase chain reaction

References

  1. O’Neill M, Albersheim P, Darvill AG (1990) The pectic polysaccharides of primary cell walls. In: Dey PM, Harborne JB (eds) Methods in plant biochemistry, carbohydrates. Academic Press, London, pp 415–441

    Chapter  Google Scholar 

  2. Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419

    Article  CAS  PubMed  Google Scholar 

  3. Bosch M, Cheung AY, Hepler PK (2005) Pectinmethylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Copenhaver GP (2005) A compendium of plant species producing pollen tetrads. Journal of the NCAS 121:17–35

    Google Scholar 

  5. Francis KE, Lam SY, Copenhaver GP (2006) Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol 142:1004–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Palusa SG, Golovkin M, Shin SB, Richardson DN, Reddy AS (2007) Organ-specific, development, hormonal and stress regulation of expression of putative pectate lyase genes in Arabidopsis. New Phytol 174:537–550

    Article  CAS  PubMed  Google Scholar 

  7. Sun L, van Nocker S (2010) Analysis of promoter activity of members of the PECTATE LYASE-LIKE (PLL) gene family in cell separation in Arabidopsis. BMC Plant Biol 10:152

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bosch M, Hepler PK (2005) Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 17:3219–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang LX, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17: 584–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tian GW, Chen MH, Zaltsman A, Citovsky V (2006) Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294: 83–91

    Article  CAS  PubMed  Google Scholar 

  11. Bosch M, Hepler PK (2006) Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. Planta 223:736–745

    Article  CAS  PubMed  Google Scholar 

  12. Kanneganti V, Gupta AK (2009) Isolation and expression analysis of OsPME1, encoding for a putative pectin methyl esterase from Oryza sativa (subsp. indica). Physiol Mol Biol 15:123–131

    Article  CAS  Google Scholar 

  13. Huang L, Cao J, Ye W, Liu T, Jiang L, Ye Y (2008) Transcriptional differences between the male-sterile mutant bcms and wild-type Brassica campestris ssp. chinensis reveal genes related to pollen development. Plant Biol 10:342–355

    Article  CAS  PubMed  Google Scholar 

  14. Huang L, Zhao X, Liu T, Dong H, Cao J (2010) Developmental characteristics of floral organs and pollen of Chinese cabbage (Brassica campestris ssp. chinensis). Plant Syst Evol 286:103–115

    Article  Google Scholar 

  15. McDonald BA, Martinez JP (1990) Restriction fragment length polymorphisms in Septoria tritici occur at a high frequency. Curr Genet 17:133–138

    Article  CAS  Google Scholar 

  16. LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/Technology 11:187–193

    Article  CAS  PubMed  Google Scholar 

  17. Karimi M, Inze D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  18. Gan C (1989) Gene gun accelerates DNA-coated particles to transform intact cells. Scientist 3:25

    Google Scholar 

  19. Mattanovich D, Ruker F, Machado A, Laimer M, Regner F, Steinkellner H, Himmler G, Katinger H (1989) Efficient transformation of Agrobacterium spp. by electroporation. Nucleic Acids Res 17:6747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang X, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:1–6

    Article  Google Scholar 

  21. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sundaresan V, Springer P, Volpe T, Haward S, Jones JD, Dean C, Ma H, Martienssen R (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Gene Dev 9: 1797–1810

    Article  CAS  PubMed  Google Scholar 

  23. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bowman JL (1994) Arabidopsis-an atlas of morphology and development. Springer-Verlag, New York

    Google Scholar 

  25. Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:1.1–1.24

    Article  Google Scholar 

  26. Becker JD, Feijo JA (2007) How many genes are needed to make a pollen tube? Lessons from transcriptomics. Ann Bot-London 100: 1117–1123

    Article  CAS  Google Scholar 

  27. Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pina C, Pinto F, Feijo, Becker J (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Twell D (2010) Male gametophyte development. In: Pua EC, Davey MR (eds) Plant developmental biology-biotechnological perspectives, vol 1. Springer-Verlag, Berlin, pp 225–244

    Chapter  Google Scholar 

  32. Chen C, Liu S, Hao X, Chen G, Cao B, Chen Q, Lei J (2010) Characterization of a pectin methylesterase gene homolog, CaPME1, expressed in anther tissues of Capsicum annuum L. Plant Mol Biol Rep 30:403–412

    Article  Google Scholar 

  33. Mareck A, Lamour R, Schaumann A, Chan P, Driouich A, Pelloux J, Lerouge P (2012) Analysis of LuPME3, a pectin methylesterase from Linum usitatissimum, revealed a variability in PME proteolytic maturation. Plant Signal Behav 7:1–3

    Article  Google Scholar 

  34. Huo Y, Miao J, Liu B, Yang Y, Zhang Y, Tahara Y, Meng Q, He Q, Kitano H, Wu X (2011) The expression of pectin methylesterase in onion flower buds is associated with the dominant male-fertility restoration allele. Plant Breeding 131:216–221

    Google Scholar 

  35. Hongo S, Sato K, Yokoyama R, Nishitani K (2012) Demethylesterification of the primary wall by PECTIN METHYLESTERASE35 provides mechanical support to the Arabidopsis stem. Plant Cell 24:2624–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mascarenhas JP (1990) Gene activity during pollen development. Annu Rev Plant Physiol 41:317–338

    Article  Google Scholar 

  37. Majewska-Sawka A, Rodriquez-Garcia MI (2006) Immunodetection of pectin and arabinogalactan protein epitopes during pollen exine formation of Beta vulgaris L. Protoplasma 228:41–47

    Article  CAS  PubMed  Google Scholar 

  38. Groszmann M, Paicu T, Alvarez JP, Swain SM, Smyth DR (2011) SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. Plant J 68:816–829

    Article  CAS  PubMed  Google Scholar 

  39. Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11:97–108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Program on Key Basic Research Projects (No. 2012CB113900), the Natural Science Foundation of China (No. 31272176), and the Key Sci-Technology Project of Zhejiang Province (No. 2010C12004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiashu Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 87 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Huang, L., Yu, X. et al. Characterization of BcMF23a and BcMF23b, two putative pectin methylesterase genes related to pollen development in Brassica campestris ssp. chinensis . Mol Biol Rep 44, 139–148 (2017). https://doi.org/10.1007/s11033-016-4090-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4090-z

Keywords

Navigation