Skip to main content
Log in

Analysis of somaclonal variation in transgenic and regenerated plants of Arabidopsis thaliana using methylation related metAFLP and TMD markers

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

We provide evidence that nucleotide sequence and methylation status changes occur in the Arabidopsis genome during in vitro tissue culture at a frequency high enough to represent an important source of variation.

Abstract

Somaclonal variation is a general consequence of the tissue culture process that has to be analyzed specifically when regenerated plants are obtained in any plant species. Currently, there are few studies about the variability comprising sequence changes and methylation status at the DNA level, generated by the culture of A. thaliana cells and tissues. In this work, two types of highly reproducible molecular markers, modified methylation sensitive AFLP (metAFLP) and transposon methylation display (TMD) have been used for the first time in this species to analyze the nucleotide and cytosine methylation changes induced by transformation and tissue culture protocols. We found significantly higher average methylation values (7.5%) in regenerated and transgenic plants when compared to values obtained from seed derived plants (3.2%) and that the main component of the somaclonal variation present in Arabidopsis clonal plants is genetic rather than epigenetic. However, we have found that the Arabidopsis regenerated and transgenic plants had a higher number of non-fully methylated sites flanking transposable elements than the control plants, and therefore, their mobilization can be facilitated. These data provide further evidence that changes in nucleotide sequence and methylation status occur in the Arabidopsis genome during in vitro tissue culture frequently enough to be an important source of variation in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altmann T, Damm B, Frommer WB et al (1994) Easy determination of ploidy level in Arabidopsis thaliana plants by means of pollen size measurement. Plant Cell Rep 13:652–656

    Article  CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:96–815

    Article  Google Scholar 

  • Azman A, Mhiri C, Grandbastien M et al (2014) Transposable elements and the detection of somaclonal variation in plant tissue culture. Malayas Appl Biol 43:1–12

    Google Scholar 

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173

    Article  CAS  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Pantoja O (2014) Growing Arabidopsis in vitro: cell suspensions, in vitro culture, and regeneration. Methods Mol Biol 1062:53–62

    Article  PubMed  Google Scholar 

  • Bednarek PT, Orlowska R, Koebner RMD et al (2007) Quantification of the tissue-culture induced variation in barley (Hordeum vulgare L.). BMC Plant Biol 7:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Bednarek PT, Orlowska R, Niedziela A (2017) A relative quantitative methylation-sensitive amplified polymorphism (MSAP) method for the analysis of abiotic stress. BMC Plant Biol 17:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Cervera MT, Ruiz-Garcia L, Martinez-Zapater J (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genomics 268:543–552

    Article  CAS  PubMed  Google Scholar 

  • Cokus SJ, Feng S, Zhang X et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Cokus SJ, Zhang X et al (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA 107:8689–8694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiuk A, Bednarek P, Rybczyński J (2010) Flow cytometry, HPLC-RP, and metAFLP analyzes to assess genetic variability in somatic embryo-derived plantlets of Gentiana pannonica Scop. Plant Mol Biol Rep 28:413–420

    Article  CAS  Google Scholar 

  • Fras A, Machczyńska J (2004) The correlation between the chromosome variation in callus and genotype of explants of Arabidopsis thaliana. Genetica 121:145–154

    Article  PubMed  Google Scholar 

  • Fulneček J, Kovařík A (2014) How to interpret methylation sensitive amplified polymorphism (MSAP) profiles? BMC Genet 15:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaj MD (2001) Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana. Plant Cell Tiss Org 64:39–46

    Article  Google Scholar 

  • Gaj MD, Maluszynski M (1987) Genetic variation in callus culture of Arabidopsis thaliana (L.) Heynh Arabidopsis Inf Serv 23:1–8

    Google Scholar 

  • Galbraith DW, Harkins KR, Knapp S (1991) Systemic endopolyploidy in Arabidopsis thaliana. Plant Physiol 96:985–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Vallejo VA, He B et al (2009) Detection of DNA changes in somaclonal mutants of rice using SSR markers and transposon display. Plant Cell Tiss Org 98:187–196

    Article  CAS  Google Scholar 

  • González AI, Sáinz A, Acedo A, Ruiz ML, Polanco C (2013) Analysis of genomic DNA methylation patterns in regenerated and control plants of rye (Secale cereale L.). Plant Growth Regul 70:227–236

  • Gunn JS, Piekarowicz A, Chien R et al (1992) Cloning and linkage analysis of Neisseria gonorrhoeae DNA methyltransferases. J Bacteriol 174:5654–5660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Wu R, Zhang Y et al (2007) Tissue culture-induced locus-specific alteration in DNA methylation and its correlation with genetic variation in Codonopsis lanceolata Benth. et Hook. f. Plant Cell Rep 26:1297–1307

    Article  CAS  PubMed  Google Scholar 

  • Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447:418–424

  • Hoekema A, Hirsch P, Hooykaas P et al (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hofmeister BT, Lee K, Rohr NA et al (2017) Stable inheritance of DNA methylation allows creation of epigenome maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biol 18:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito H, Kakutani T (2014) Control of transposable elements in Arabidopsis thaliana. Chromosome Res 22:217–223

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Mithani A, Gan X et al (2011) Regenerant Arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes. Cur Biol 21:1385–1390

    Article  CAS  Google Scholar 

  • Joly-Lopez Z, Bureau TE (2014) Diversity and evolution of transposable elements in Arabidopsis. Chromosome Res 22:203–216

    Article  CAS  PubMed  Google Scholar 

  • Kaeppler SM, Phillips RL (1993) Tissue culture-induced DNA methylation variation in maize. Proc Natl Acad Sci USA 90:8773–8776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantama L, Junbuathong S, Sakulkoo J et al (2013) Epigenetic changes and transposon reactivation in Thai rice hybrids. Mol Breed 31:815–827

    Article  CAS  Google Scholar 

  • Kashkush K, Khasdan V (2007) Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics 177:1975–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M, Miura A, Bender J et al (2003) Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Curr Biol 13:421–426

    Article  CAS  PubMed  Google Scholar 

  • Korch C, Hagblom P (1986) In-vivo-modified gonococcal plasmid pJD1. Eur J Biochem 161:519–524

    Article  CAS  PubMed  Google Scholar 

  • Kubis S, Castilho A, Vershinin A et al (2003) Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation. Plant Mol Biol 52:69–79

    Article  CAS  PubMed  Google Scholar 

  • Labra M, Vannini C, Grassi F et al (2004) Genomic stability in Arabidopsis thaliana transgenic plants obtained by floral dip. Theor Appl Genet 109:1512–1518

    Article  CAS  PubMed  Google Scholar 

  • Larkin P, Scowcroft W (1981) Somaclonal variation—a novel source of variability from cell-cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Chory J (1998) Preparation of DNA from Arabidopsis. In: Martinez-Zapater JM, Salinas J (eds) Arabidopsis protocols. Humana Press Inc, Totowa, pp 55–60

    Chapter  Google Scholar 

  • Li X, Yu X, Wang N et al (2007) Genetic and epigenetic instabilities induced by tissue culture in wild barley (Hordeum brevisubulatum (Trin.) Link). Plant Cell Tiss Org 90:153–168

    Article  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machczyńska J, Orłowska R, Zimny J et al (2014) Extended metAFLP approach in studies of tissue culture induced variation (TCIV) in triticale. Mol Breed 34:845–854

    Article  PubMed  PubMed Central  Google Scholar 

  • Machczyńska J, Zimny J, Bednarek PT (2015) Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A Camus 1927) regenerants. Plant Mol Biol 89:279–292

    Article  PubMed  PubMed Central  Google Scholar 

  • MacKenzie JL, Saadé FE, Le QH et al (2005) Genomic mutation in lines of Arabidopsis thaliana exposed to ultraviolet-B radiation. Genetics 171:715–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthes M, Singh R, Cheah S et al (2001) Variation in oil palm (Elaeis guineensis Jacq.) tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes. Theor Appl Genet 102:971–979

    Article  CAS  Google Scholar 

  • McCourt P, Keith K (1998) Sterile techniques in Arabidopsis. Method Mol Cell Biol 82:13‑17

    Google Scholar 

  • Mirouze M, Reinders J, Bucher E et al (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461:427–430

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nelson PS, Papas TS, Schweinfest CW (1993) Restriction endonuclease cleavage of 5-methyl-deoxycytosine hemimethylated DNA at high enzyme-to-substrate ratios. Nucleic Acids Res 21:681–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlowska R, Machczyńska J, Oleszczuk S et al (2016) DNA methylation changes and TE activity induced in tissue cultures of barley (Hordeum vulgare L.). J of Biol Res Thessaloniki 23:19

    Article  Google Scholar 

  • Parra R, Pastor MT, Pérez-Payá E et al (2001) Effect of in vitro shoot multiplication and somatic embryogenesis on 5-methylcytosine content in DNA of Myrtus communis L. Plant Growth Regul 33:131–136

    Article  CAS  Google Scholar 

  • Peraza-Echeverria S, Herrera-Valencia V, James-Kay A (2001) Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP). Plant Sci 161:359–367

    Article  CAS  PubMed  Google Scholar 

  • Polanco C, Ruiz ML (2002) AFLP analysis of somaclonal variation in Arabidopsis thaliana regenerated plants. Plant Sci 162:817–824

    Article  CAS  Google Scholar 

  • Quemada H, Roth EJ, Lark KG (1987) Changes in methylation of tissue cultured soybean cells detected by digestion with the restriction enzymes HpaII and MspI. Plant Cell Rep 6:63 66

    Article  Google Scholar 

  • Reyna-Lopez G, Simpson J, Ruiz Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet 253:703–710

    Article  CAS  PubMed  Google Scholar 

  • Roberts RJ, Vincze T, Posfai J et al (2015) REBASE-a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 43(D1):D298-D299

    Article  Google Scholar 

  • Ruiz-García L, Cervera MT, Martínez-Zapater JM (2005) DNA methylation increases throughout Arabidopsis development. Planta 222:301–306

    Article  PubMed  Google Scholar 

  • Sangwan RS, Bourgeois Y, Brown S et al (1992) Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana. Planta 188:439–456

    Article  CAS  PubMed  Google Scholar 

  • Scheid OM, Jakovleva L, Afsar K et al (1996) A change of ploidy can modify epigenetic silencing. Proc Natl Acad Sci USA 93:7114–7119

    Article  Google Scholar 

  • Schrey AW, Álvarez M, Foust CM et al (2013) Ecological epigenetics: beyond MS-AFLP. Integr Comp Biol 53:340‑350

    Article  Google Scholar 

  • Schulz B, Eckstein RL, Durka W (2013) Scoring and analysis of methylation-sensitive amplification polymorphisms for epigenetic population studies. Mol Ecol 13:642–653

    Article  CAS  Google Scholar 

  • Sedov KA, Fomenkov AA, Solovyova AI et al (2014) The level of genetic variability of cells in prolonged suspension culture of Arabidopsis thaliana. Biol Bull 41:493–499

    Article  CAS  Google Scholar 

  • Shemer O, Landau U, Candela H et al (2015) Competency for shoot regeneration from Arabidopsis root explants is regulated by DNA methylation. Plant Sci 238:251–261

    Article  CAS  PubMed  Google Scholar 

  • Smulders M, RusKortekaas W, Vosman B (1995) Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants. Theor Appl Genet 91:1257–1264

    Article  CAS  PubMed  Google Scholar 

  • Smýkal P, Valledor L, Rodriguez R et al (2007) Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.). Plant Cell Rep 26:1985–1998

    Article  PubMed  Google Scholar 

  • Stroud H, Ding B, Simon SA et al (2013) Plants regenerated from tissue culture contain stable epigenome changes in rice. eLIFE 2:e00354

    Article  PubMed  PubMed Central  Google Scholar 

  • Takagi K, Ishikawa N, Maekawa M et al (2007) Transposon display for active DNA transposons in rice. Genes Genet Syst 82:109–122

    Article  CAS  PubMed  Google Scholar 

  • Tsukahara S, Kobayashi A, Kawabe A et al (2009) Bursts of retrotransposition reproduced in Arabidopsis. Nature 461:423–426

    Article  CAS  PubMed  Google Scholar 

  • Valvekens D, Van Montagu M, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85:5536–5540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wu R, Lin X et al (2013) Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids. BMC Plant Biol 13:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Wu R, Zhang B et al (2012) Epigenetic instability in genetically stable micropropagated plants of Gardenia jasminoides Ellis. Plant Growth Regul 66:137 143

    Article  Google Scholar 

  • Xu ML, Li XQ, Korban SS (2004) DNA-methylation alterations and exchanges during in vitro cellular differentiation in rose (Rosa hybrida L.). Theor Appl Genet 109:899–910

    Article  CAS  PubMed  Google Scholar 

  • Yu XM, Li X, Zhao XX et al (2011) Tissue culture- induced genomic alteration in maize (Zea mays) inbred lines and F1 hybrids. Ann Appl Biol 158:237–247

    Article  CAS  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Xu C, Yan H et al (2009) Limited tissue culture-induced mutations and linked epigenetic modifications in F1 hybrids of sorghum pure lines are accompanied by increased transcription of DNA methyltransferases and 5-methylcytosine glycosylases. Plant J 57:666–679

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish DGICYT grant AGL2066-14249-C02-02 and by the Junta de Castilla y León grant LE052A06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Polanco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Tarek Hewezi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2017_2217_MOESM1_ESM.pptx

Supplementary Figure 1. Grouped column scatter graph depicting the number of different types of metAFLP markers detected in each plant analyzed corresponding to the CCGN and CCWG primer clusters. Red horizontal lines represent mean values and blue horizontal lines represent standard deviations. 208R0 and 211R0: regenerated cell lines; 261T0 and 291T0: transformed cell lines; R0s: grouped regenerated lines; T0s: grouped transformed lines; R0s+T0s: grouped cell lines (PPTX 428 KB)

299_2017_2217_MOESM2_ESM.pptx

Supplementary Figure 2. Grouped column scatter graph depicting the number of different types of TMD markers detected in each plant analyzed associated to copia transposable elements. Red horizontal lines represent mean values and blue horizontal lines represent standard deviations. 208R0 and 211R0: regenerated cell lines; 261T0 and 291T0: transformed cell lines; R0s: grouped regenerated lines; T0s: grouped transformed lines; R0s+T0s: grouped cell lines (PPTX 164 KB)

299_2017_2217_MOESM3_ESM.pptx

Supplementary Figure 3. Grouped column scatter graph depicting the number of different types of TMD markers detected in each plant analyzed associated to TRIM transposable elements. Red horizontal lines represent mean values and blue horizontal lines represent standard deviations. 208R0 and 211R0: regenerated cell lines; 261T0 and 291T0: transformed cell lines; R0s: grouped regenerated lines; T0s: grouped transformed lines; R0s+T0s: grouped cell lines (PPTX 190 KB)

Supplementary material 4 (DOC 57 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coronel, C.J., González, A.I., Ruiz, M.L. et al. Analysis of somaclonal variation in transgenic and regenerated plants of Arabidopsis thaliana using methylation related metAFLP and TMD markers. Plant Cell Rep 37, 137–152 (2018). https://doi.org/10.1007/s00299-017-2217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2217-x

Keywords

Navigation