Skip to main content
Log in

Discerning picroside-I biosynthesis via molecular dissection of in vitro shoot regeneration in Picrorhiza kurroa

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Expression analysis of primary and secondary metabolic pathways genes vis-à-vis shoot regeneration revealed developmental regulation of picroside-I biosynthesis in Picrorhiza kurroa.

Abstract

Picroside-I (P-I) is an important iridoid glycoside used in several herbal formulations for treatment of various disorders. P-I is synthesized in shoots of Picrorhiza kurroa and Picrorhiza scrophulariiflora. Current study reports on understanding P-I biosynthesis in different morphogenetic stages, viz. plant segment (PS), callus initiation (CI), callus mass (CM), shoot primordia (SP), multiple shoots (MS) and fully developed (FD) stages of P. kurroa. Expression analysis of genes involved in primary and secondary metabolism revealed that genes encoding HMGR, PMK, DXPS, ISPE, GS, G10H, DAHPS and PAL enzymes of MVA, MEP, iridoid and shikimate/phenylpropanoid pathways showed significant modulation of expression in SP, MS and FD stages in congruence with P-I content compared to CM stage. While HK, PK, ICDH, MDH and G6PDH showed high expression in MS and FD stages of P. kurroa, RBA, HisK and CytO showed high expression with progress in regeneration of shoots. Quantitative expression analysis of secondary metabolism genes at two temperatures revealed that 7 genes HMGR, PMK, DXPS, GS, G10H, DAHPS and PAL showed high transcript abundance (32–87-folds) in FD stage derived from leaf and root segments at 15 °C compared to 25 °C in P. kurroa. Further screening of these genes at species level showed high expression pattern in P. kurroa (6–19-folds) vis-à-vis P. scrophulariiflora that was in corroboration with P-I content. Therefore, current study revealed developmental regulation of P-I biosynthesis in P. kurroa which would be useful in designing a suitable genetic intervention study by targeting these genes for enhancing P-I production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

26S:

26S rRNA

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HMGR:

3-Hydroxy-3-methylglutaryl-CoA reductase

PMK:

Phosphomevalonate kinase

DXPS:

1-Deoxy-d-xylulose-5-phosphate synthase

ISPD:

2-C-methylerythritol 4-phosphate cytidyl transferase

ISPE:

4-(Cytidine-5-diphospho)-2-C-methylerythritol kinase

GS:

Geraniol synthase

G10H:

Geraniol-10-hydroxylase

10-HGO:

10-Hydroxygeraniol dehydrogenase

IS:

Iridoid synthase

DAHPS:

3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase

PAL:

Phenylalanine ammonia lyase

HK:

Hexokinase

PK:

Pyruvate kinase

ICDH:

Isocitrate dehydrogenase

MDH:

Malate dehydrogenase

G6PDH:

Glucose-6-phosphate dehydrogenase

RBA:

RuBisCO activase

ARP:

Auxin response protein

ARF7:

Auxin response factor 7

HisK:

Histidine kinase

CytO:

Cytokinin oxidase

MVA:

Mevalonate

MEP:

Non-mevalonate

PS:

Plant segment stage

CI:

Callus initiation stage

CM:

Callus mass stage

SP:

Shoot primordia stage

MS:

Multiple shoots stage

FD:

Fully developed stage

MS medium:

Murashige and Skoog medium

P-I:

Picroside-I

References

  • Al-Ghazi Y, Bourot S, Arioli T, Dennis ES, Llewellyn DJ (2009) Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality. Plant Cell Physiol 50(7):1364–1381

    Article  CAS  PubMed  Google Scholar 

  • Ali MB, McNear DH (2014) Induced transcriptional profiling of phenylpropanoid pathway genes increased flavonoid and lignin content in Arabidopsis leaves in response to microbial products. BMC Plant Biol 14:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Bantawa P, Ghosh SK, Bhandari P, Singh B, Ghosh PD, Ahuja PS, Mondal TK (2010) Micropropagation of an elite line of Picrorhiza scrophulariiflora, Pennell, an endangered high valued medicinal plant of the Indo-China Himalayan region. Med Aromat Plant Sci Biotechnol 4:1–7

    Google Scholar 

  • Bantawa P, Saha-Roy O, Ghosh SK, Mondal TK (2011) In vitro regeneration of an endangered medicinal plant Picrorhiza scrophulariiflora. Biol Plant 55(1):169–172

    Article  CAS  Google Scholar 

  • Bauer N, Fulgosi H, Jelaska S (2011) Over expression of phenylalanine ammonia-lyase in transgenic roots of Coleus blumei alters growth and rosmarinic acid synthesis. Food Technol Biotechnol 49:24–31

    CAS  Google Scholar 

  • Bhandari P, Kumar N, Singh B, Kaul VK (2008) Simultaneous determination of sugars and picrosides in Picrorhiza species using ultrasonic extraction and high- performance liquid chromatography with evaporative light scattering detection. J Chromatogr A 1194:257–261

    Article  CAS  PubMed  Google Scholar 

  • Bhat WW, Razdan S, Rana S, Dhar N, Wani TA, Qazi P, Vishwakarma R, Lattoo SK (2014) A phenylalanine ammonia-lyase ortholog (PkPAL1) from Picrorhiza kurroa Royle ex. Benth: molecular cloning, promoter analysis and response to biotic and abiotic elicitors. Gene 547:245–256

    Article  CAS  PubMed  Google Scholar 

  • Bolaños JP, Delgado-Esteban M, Herrero-Mendez A, Fernandez-Fernandez S, Almeida A (2008) Regulation of glycolysis and pentose-phosphate pathway by nitric oxide: impact on neuronal survival. Biochim Biophys Acta 1777:789–793

    Article  PubMed  Google Scholar 

  • Bouthour D, Hajjaji-Nasraoui A, Saafi L, Gouia H, Chaffei-Haouari C (2012) Effects of NaCl on growth and activity of enzymes involved in carbon metabolism in leaves of tobacco (Nicotiana rustica). Afr J Biotechnol 11(63):12619–12629

    Article  CAS  Google Scholar 

  • Che P, Gingerich DJ, Lall S, Howell SH (2002) Global and cytokinin related gene expression changes during shoot development in Arabidopsis. Plant Cell 14:2771–2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Che P, Lall S, Nettleton D, Howell SH (2006) Gene expression programs during shoot, root and callus development in Arabidopsis tissue culture. Plant Physiol 141:620–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conner AJ (1987) Differential solasodine accumulation in photoautotrophic and heterotrophic tissue cultures of Solanum laciniatum. Phytochemistry 26(10):2749–2750

    Article  CAS  Google Scholar 

  • Cui L, Ni X, Ji Q, Teng X, Yang Y, Wu C et al (2015) Co-overexpression of geraniol-10-hydroxylase and strictosidine synthase improves anti-cancer drug camptothecin accumulation in Ophiorrhiza pumila. Sci Rep-UK 5:8227

    Article  CAS  Google Scholar 

  • Gahlan P, Singh HR, Shankar R, Sharma N, Kumari A, Chawla V, Ahuja PS, Kumar S (2012) De novo sequencing and characterization of Picrorhiza kurroa transcriptome at two temperatures showed major transcriptome adjustments. BMC Genom 13:126

    Article  CAS  Google Scholar 

  • Guo B, Abbasi BH, Zeb A, Xu LL, Wei YH (2011) Thidiazuron: a multi-dimensional plant growth regulator. Afr J Biotechnol 10(45):8984–9000

    CAS  Google Scholar 

  • Gupta N, Sharma SK, Rana JC, Chauhan RS (2011) Expression of flavonoid biosynthesis genes vis-à-vis rutin content variation in different growth stages of Fagopyrum species. J Plant Physiol 168:2117–2123

    Article  CAS  PubMed  Google Scholar 

  • Hannah MA, Heyer AG, Hincha DK (2005) A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet 1:e26s

    Article  Google Scholar 

  • Henkes S, Sonnewald U, Badur R, Flachmann R, Stitt M (2001) A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13:535–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:907–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa K, Nakano M, Oikawa Y, Yamamura S (1996) Adventitious shoot regeneration from leaf, stem and root explants of commercial cultivars of Gentiana. Plant Cell Rep 15:578–581

    Article  CAS  PubMed  Google Scholar 

  • Kawoosa T, Singh H, Kumar A, Sharma SK, Devi K, Dutt S, Vats SK, Sharma M, Ahuja PS, Kumar S (2010) Light and temperature regulated terpene biosynthesis: hepatoprotective monoterpene picroside accumulation in Picrorhiza kurroa. Funct Integr Genomics 10:393–404

    Article  CAS  PubMed  Google Scholar 

  • Klee HJ, Muskopf YM, Gasser CS (1987) Cloning of an Arabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphatesynthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants. Mol Genet Genomics 210:437–442

    Article  CAS  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Sood H, Sharma M, Chauhan RS (2013) A proposed biosynthetic pathway of picrosides linked through the detection of biochemical intermediates in the endangered medicinal herb Picrorhiza kurroa. Phytochem Anal 24:598–602

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Pal T, Sharma N, Kumar V, Sood H, Chauhan RS (2015a) Expression analysis of biosynthetic pathway genes vis-à-vis podophyllotoxin content in Podophyllum hexandrum Royle. Protoplasma. doi:10.1007/s00709-015-0757-x

    Google Scholar 

  • Kumar V, Sharma N, Shitiz K, Singh TR, Tandon C, Sood H, Chauhan RS (2015b) An insight into conflux of metabolic traffic leading to picroside-I biosynthesis by tracking molecular time course changes in a medicinal herb. Plant Cell Tissue Organ Cult, Picrorhiza kurroa. doi:10.1007/s11240-015-0839-7

    Google Scholar 

  • Kumar V, Shitiz K, Chauhan RS, Sood H, Tandon C (2015c) Tracking dynamics of enzyme activities and their gene expression in Picrorhiza kurroa with respect to picroside accumulation. J Plant Biochem Biotechnol. doi:10.1007/s13562-015-0317-7

    Google Scholar 

  • Kurz WGW, Constabel F (1985) Aspects affecting biosynthesis and biotransformation of secondary metabolites in plant cell cultures. Crit Rev Biotechnol 2(2):105–118

    Article  CAS  Google Scholar 

  • Lee SY, Damodaran PN, Roh KS (2014) Influence of salicylic acid on rubisco and rubisco activase in tobacco plant grown under sodium chloride in vitro. Saudi J Biol Sci 21:417–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd JC, Zakhleniuk OV (2004) Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of the Arabidopsis mutant, pho3. J Exp Bot 55:400

    Article  Google Scholar 

  • Matt P, Krapp A, Haake V, Mock HP, Stitt M (2002) Decreased Rubisco activity leads to dramatic changes of nitrate metabolism, amino acid metabolism and the levels of phenylpropanoids and nicotine in tobacco antisense RBCS transformants. Plant J 30(6):663–677

    Article  CAS  PubMed  Google Scholar 

  • Mikula A, Rybczynski J (2001) Somatic embryogenesis of Gentiana genus I. The effect of the preculture treatment and primary explant origin on somatic embryogenesis of Gentiana cruciata L., G. pannonica Scop. and G. tibetica King. Acta Physiol Plant 23(1):15–25

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagarajan M, Kuruvilla GR, Kumar KS, Venkatasubramanian P (2015) Abhava pratinidhi dravya: a comparative phytochemistry of Ativisha, Musta and related species. J Ayurveda Integr Med 6(1):53–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olofsson L, Engström A, Lundgren A, Brodelius PE (2011) Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. BMC Plant Biol 11:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandit S, Shitiz K, Sood H, Chauhan RS (2013a) Differential biosynthesis and accumulation of picrosides in an endangered medicinal herb Picrorhiza kurroa. J Plant Biochem Biotechnol 22:335–342

    Article  CAS  Google Scholar 

  • Pandit S, Shitiz K, Sood H, Naik PK, Chauhan RS (2013b) Expression pattern of fifteen genes of non-mevalonate (MEP) and mevalonate (MVA) pathways in different tissues of endangered medicinal herb Picrorhiza kurroa with respect to picrosides content. Mol Biol Rep 40:1053–1063

    Article  CAS  PubMed  Google Scholar 

  • Patial V, Devi K, Sharma M, Bhattacharya A, Ahuja PS (2012) Propagation of Picrorhiza kurroa Royle ex Benth: an important medicinal plant of Western Himalaya. J Med Plant Res 6:4848–4860

    Article  CAS  Google Scholar 

  • Peebles CA, Sander GW, Hughes EH, Peacock R, Shanks JV, San KY (2011) The expression of 1-deoxy-D-xylulose synthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots. Metab Eng 13:234–240

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Easson MLAE, Froese J, Simionescu R, Hudlicky T, De Luca V (2015) Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc Natl Acad Sci USA 112(19):6224–6229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosu A, Eremia MC, Spiridon M, Guidea S, Lupescu I, Jurcoane S (2010) In search of plant sources for serine protease inhibitors: I. Detection of serine protease inhibitors in callus cultures induced from somatic explants of flax (Linum usitatissimum L.). Roumanian. Biotechnol Lett 15(5):5668–5674

    CAS  Google Scholar 

  • Sah JN, Varshney VK (2013) Chemical constituents of Picrorhiza genus: a review. Am J Essent Oils Nat Prod 1:22–37

    Google Scholar 

  • Schmülling T, Werner T, Riefler M, Krupková E, Bartrina y Manns I (2003) Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res 116:241–252

    Article  PubMed  Google Scholar 

  • Sharma A, Kaur R, Sharma N (2014a) In vitro morphogenic response of different explants of Gentiana kurroo Royle from Western Himalayas- an endangered medicinal plant. Physiol Mol Biol Plants 20(2):249–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma N, Shitiz K, Kalia D, Ahuja JK, Chauhan RS, Sood H (2014b) Expression analysis of key genes for picroside-I production in in vitro grown shoots of different genotypes and species of endangered herb Picrorhiza. Int J Basic Appl Biol 2(1):36–39

    Google Scholar 

  • Sharma N, Chauhan RS, Sood H (2015) Seaweed extract as a novel elicitor and medium for mass propagation and picroside-I production in an endangered medicinal herb Picrorhiza kurroa. Plant Cell Tissue Organ Cult 122:57–65

    Article  Google Scholar 

  • Shitiz K, Pandit S, Chauhan RS, Sood H (2013) Picrosides content in the rhizomes of Picrorhiza kurroa Royle ex. Benth traded for herbal drugs in the markets of North India. Int J Med Aromat Plants 3:226–233

    Google Scholar 

  • Shitiz K, Sharma N, Pal T, Sood H, Chauhan RS (2015) NGS transcriptomes and enzyme inhibitors unravel complexity of picrosides biosynthesis in Picrorhiza kurroa Royle ex. Benth. PLoS One. doi:10.1371/journal.pone.0144546

    PubMed  PubMed Central  Google Scholar 

  • Sidiq T, Khajuria A, Suden P, Sharma R, Singh S, Suri KA, Satti NK, Johri RK (2010) Possible role of macrophages induced by an iridoid glycoside (RLJ-NE-299A) in host defense mechanism. Int Immunopharmacol 1:128–135

    Google Scholar 

  • Simkin AJ, Miettinen K, Claudel P, Burlat V, Guirimand G, Courdavault V et al (2013) Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry 85:36–43

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Banyal HS (2011) Antimalarial effects of Picrorhiza kurroa Royle Ex Benth extracts on Plasmodium berghei. Asian J Exp Biol Sci 2:529–532

    Google Scholar 

  • Singh H, Gahlan P, Kumar S (2013) Cloning and expression analysis of ten genes associated with picrosides biosynthesis in Picrorhiza kurroa. Gene 515:320–328

    Article  CAS  PubMed  Google Scholar 

  • Sood H, Chauhan RS (2009) High frequency callus induction and plantlet regeneration from different explants of Picrorhiza kurroa medicinal herb of Himalayas. Afr J Biotechnol 8:1965–1972

    CAS  Google Scholar 

  • Sood H, Chauhan RS (2010) Biosynthesis and accumulation of a medicinal compound, Picroside-I, in cultures of Picrorhiza kurroa Royle ex Benth. Plant Cell Tissue Organ Cult 100:113–117

    Article  CAS  Google Scholar 

  • Tzin V, Malitsky S, Zvi MMB, Bedair M, Sumner L, Aharoni A, Galili G (2012) Expression of a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism. New Phytol 194(2):430–439

    Article  CAS  PubMed  Google Scholar 

  • Wakao S, Andre C, Benning C (2008) Functional analyses of cytosolic glucose-6-phosphate dehydrogenases and their contribution to seed oil accumulation in Arabidopsis. Plant Physiol 146:277–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang CG, Li W, Mao YF, Zhao DL, Dong W, Guo GQ (2005) Endogenous hormonal levels in Scutellaria baicalensis calli induced by thidiazuron. Russ J Plant Physiol 52(3):345–351

    Article  CAS  Google Scholar 

  • Zhang J, Gao WY, Wang J, Li XL (2011) Effects of explant types and media salt strength on growth and secondary metabolite accumulation in adventitious roots of Periploca sepium Bunge. Acta Physiol Plant 33(6):2447–2452

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Jaypee University of Information Technology for providing the necessary research facilities and Department of Biotechnology, Ministry of Science and Technology, Govt. of India for providing research grant in the form of a programme support on high value medicinal plants to RSC and HS. We are also thankful to the Himalayan Forest Research Institute (HFRI), Manali, India and National Bureau of Plant Genetic Resources, New Delhi, India for providing plant material of P. kurroa and P. scrophulariiflora, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Sood.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Communicated by H. Ebinuma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Chauhan, R.S. & Sood, H. Discerning picroside-I biosynthesis via molecular dissection of in vitro shoot regeneration in Picrorhiza kurroa . Plant Cell Rep 35, 1601–1615 (2016). https://doi.org/10.1007/s00299-016-1976-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-1976-0

Keywords

Navigation