Skip to main content
Log in

Isolation of a maize ZmCI-1B promoter and characterization of its activity in transgenic maize and tobacco

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The 2-kb ZmCI - 1B promoter is active in the root and embryo and induced by wounding in maize and the 220-bp 5′-deleted segment maybe the minimal promoter.

Abstract

The subtilisin–chymotrypsin inhibitor gene, CI-1B of Zea mays (ZmCI-1B), has been suggested to induce the maize defense system to resist insect attack. Real-time RT-PCR showed that ZmCI-1B gene exhibited especially high expression in roots and embryos. The 2-kb full-length promoter of ZmCI-1B gene was isolated from the maize genome and used to drive expression of a beta-glucuronidase (GUS) reporter gene for transient expression and stable expression analysis in maize. The results of GUS histochemical staining in transgenic maize plants revealed that the ZmCI-1B promoter induced GUS expression preferentially in roots and embryos and in response to wounding. A series of 5′-deleted segments of the ZmCI-1B promoter were cloned individually to drive GUS expression for further analysis. Deletion analysis combined with the histochemical staining of transgenic tobacco plants revealed 220-bp segment could drive GUS in a tissue-specific and wounding-induced expression in tobacco; thus, it maybe the minimally active promoter of ZmCI-1B gene. Furthermore, it revealed that the ZmCI-1B promoter contained tissue-specific and wounding-induced elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CaMV:

Cauliflower mosaic virus

DAP:

Days after pollination

DAG:

Days after germination

ppt:

Phosphinothricin

References

  • Baumlein H, Wobus U, Pustell J, Kafatos FC (1986) The legumin gene family: structure of a B type gene of Vicia faba and a possible legumin gene specific regulatory element. Nucleic Acids Res 14:2707–2720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baumlein H, Boerjan W, Nagy I, Bassuner R, Van Montagu M, Inze D, Wobus U (1991) A novel seed protein gene from Vicia faba is developmentally regulated in transgenic tobacco and Arabidopsis plants. Mol Gen Genet MGG 225:459–467

    Article  CAS  Google Scholar 

  • Benfey PN, Ren L, Chua N-H (1989) The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J 8:2195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brinch-Pedersen H, Borg S, Tauris B, Holm PB (2007) Molecular genetic approaches to increasing mineral availability and vitamin content of cereals. J Cereal Sci 46:308–326

    Article  CAS  Google Scholar 

  • Chakravarthy S, Tuori RP, D’Ascenzo MD, Fobert PR, Després C, Martin GB (2003) The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell Online 15:3033–3050

    Article  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  CAS  PubMed  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  CAS  PubMed  Google Scholar 

  • Cordero MJ, Raventos D, San Segundo B (1994) Expression of a maize proteinase inhibitor gene is induced in response to wounding and fungal infection: systemic wound-response of a monocot gene. Plant J Cell Mol Biol 6:141–150

    Article  CAS  Google Scholar 

  • Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23:567–581

    Article  CAS  PubMed  Google Scholar 

  • Di Gennaro S, Ficca AG, Panichi D, Poerio E (2005) cDNA cloning and heterologous expression of a wheat proteinase inhibitor of subtilisin and chymotrypsin (WSCI) that interferes with digestive enzymes of insect pests. Biol Chem 386:383–389

    Article  PubMed  Google Scholar 

  • Dombrowski JE (2003) Salt stress activation of wound-related genes in tomato plants. Plant Physiol 132:2098–2107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunse KM, Kaas Q, Guarino RF, Barton PA, Craik DJ, Anderson MA (2010) Molecular basis for the resistance of an insect chymotrypsin to a potato type II proteinase inhibitor. Proc Natl Acad Sci USA 107:15016–15021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res 4:388–396

    Article  CAS  PubMed  Google Scholar 

  • Enyedi AJ, Yalpani N, Silverman P, Raskin I (1992) Signal molecules in systemic plant resistance to pathogens and pests. Cell 70:879–886

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ezcurra I, Ellerström M, Wycliffe P, Stålberg K, Rask L (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol 40:699–709

    Article  CAS  PubMed  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fehlberg V, Vieweg MF, Dohmann EM, Hohnjec N, Pühler A, Perlick AM, Küster H (2005) The promoter of the leghaemoglobin gene VfLb29: functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots. J Exp Bot 56:799–806

    Article  CAS  PubMed  Google Scholar 

  • Fiedler U, Filistein R, Wobus U, Baumlein H (1993) A complex ensemble of cis-regulatory elements controls the expression of a Vicia faba non-storage seed protein gene. Plant Mol Biol 22:669–679

    Article  CAS  PubMed  Google Scholar 

  • Filichkin SA, Leonard JM, Monteros A, Liu P-P, Nonogaki H (2004) A novel endo-β-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol 134:1080–1087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gidoni D, Brosio P, Bond-Nutter D, Bedbrook J, Dunsmuir P (1989) Novel cis-acting elements in Petunia Cab gene promoters. Mol Gen Genet MGG 215:337–344

    Article  CAS  Google Scholar 

  • Gowik U, Burscheidt J, Akyildiz M, Schlue U, Koczor M, Streubel M, Westhoff P (2004) cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell Online 16:1077–1090

    Article  CAS  Google Scholar 

  • Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B (2005) Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol 57:155–171

    Article  CAS  PubMed  Google Scholar 

  • Hejgaard J (1981) Isoelectric focusing of subtilisin inhibitors: detection and partial characterization of cereal inhibitors of chymotrypsin and microbial proteases. Anal Biochem 116:444–449

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu J, Mitchum MG, Barnaby N, Ayele BT, Ogawa M, Nam E, Lai W-C, Hanada A, Alonso JM, Ecker JR (2008) Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell Online 20:320–336

    Article  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901

    CAS  PubMed Central  PubMed  Google Scholar 

  • José-Estanyol M, Pérez P, Puigdomènech P (2005) Expression of the promoter of HyPRP, an embryo-specific gene from Zea mays in maize and tobacco transgenic plants. Gene 356:146–152

    Article  PubMed  Google Scholar 

  • Kagaya Y, Ohmiya K, Hattori T (1999) RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res 27:470–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keller B, Baumgartner C (1991) Vascular-specific expression of the bean GRP 1.8 gene is negatively regulated. Plant Cell Online 3:1051–1061

    Article  CAS  Google Scholar 

  • Kim SY, Chung HJ, Thomas TL (1997) Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J 11:1237–1251

    Article  CAS  PubMed  Google Scholar 

  • Kim DW, Lee SH, Choi S-B, Won S-K, Heo Y-K, Cho M, Park Y-I, Cho H-T (2006) Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. Plant Cell Online 18:2958–2970

    Article  CAS  Google Scholar 

  • Kim JH, Jung IJ, Kim DY, Fanata WI, Son BH, Yoo JY, Harmoko R, Ko KS, Moon JC, Jang HH, Kim WY, Kim JY, Lim CO, Lee SY, Lee KO (2011) Proteomic identification of an embryo-specific 1Cys-Prx promoter and analysis of its activity in transgenic rice. Biochem Biophys Res Commun 408:78–83

    Article  CAS  PubMed  Google Scholar 

  • Ko J-H, Beers EP, Han K-H (2006) Global comparative transcriptome analysis identifies gene network regulating secondary xylem development in Arabidopsis thaliana. Mol Genet Genomics 276:517–531

    Article  CAS  PubMed  Google Scholar 

  • Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends Plant Sci 2:379–384

    Article  Google Scholar 

  • Leach F, Aoyagi K (1991) Promoter analysis of the highly expressed rolC and rolD root-inducing genes of Agrobacterium rhizogenes: enhancer and tissue-specific DNA determinants are dissociated. Plant Sci 79:69–76

    Article  CAS  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Liu S, Yu Z, Liu Y, Wu P (2013) Isolation and characterization of two novel root-specific promoters in rice (Oryza sativa L.). Plant Sci Int J Exp Plant Biol 207:37–44

    CAS  Google Scholar 

  • Liu X, Tian J, Zhou X, Chen R, Wang L, Zhang C, Zhao J, Fan Y (2014) Identification and characterization of promoters specifically and strongly expressed in maize embryos. Plant Biotechnol J 12:1286–1296

    Article  CAS  PubMed  Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5:81–84

    Article  CAS  PubMed  Google Scholar 

  • Mohanty B, Krishnan S, Swarup S, Bajic VB (2005) Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species. Ann Botany 96:669–681

    Article  CAS  Google Scholar 

  • Moseley J, Quinn J, Eriksson M, Merchant S (2000) The Crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii. EMBO J 19:2139–2151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mur LA, Xu R, Casson SA, Stoddart WM, Routledge AP, Draper J (2004) Characterization of a proteinase inhibitor from Brachypodium distachyon suggests the conservation of defence signalling pathways between dicotyledonous plants and grasses. Mol Plant Pathol 5:267–280

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nishiuchi T, Shinshi H, Suzuki K (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. J Biol Chem 279:55355–55361

    Article  CAS  PubMed  Google Scholar 

  • Nitz I, Berkefeld H, Puzio PS, Grundler FM (2001) Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Sci Int J Exp Plant Biol 161:337–346

    CAS  Google Scholar 

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  CAS  PubMed  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell Online 15:1591–1604

    Article  CAS  Google Scholar 

  • Ohtsubo K, Richardson M (1992) The amino acid sequence of a 20 kDa bifunctional subtilisin/alpha-amylase inhibitor from bran [correction of brain] of rice (Oryza sativa L.) seeds. FEBS Lett 309:68–72

    Article  CAS  PubMed  Google Scholar 

  • Pauli S, Rothnie HM, Chen G, He X, Hohn T (2004) The cauliflower mosaic virus 35S promoter extends into the transcribed region. J Virol 78:12120–12128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piechulla B, Merforth N, Rudolph B (1998) Identification of tomato Lhc promoter regions necessary for circadian expression. Plant Mol Biol 38:655–662

    Article  CAS  PubMed  Google Scholar 

  • Pino MT, Skinner JS, Park EJ, Jeknic Z, Hayes PM, Thomashow MF, Chen TH (2007) Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnol J 5:591–604

    Article  CAS  PubMed  Google Scholar 

  • Plesch G, Ehrhardt T, Mueller-Roeber B (2001) Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression. Plant J 28:455–464

    Article  CAS  PubMed  Google Scholar 

  • Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol Plant 40:1–22

    Article  CAS  Google Scholar 

  • Rogers H, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale D, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45:577–585

    Article  CAS  PubMed  Google Scholar 

  • Shirsat A, Wilford N, Croy R, Boulter D (1989) Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco. Mol Gen Genet MGG 215:326–331

    Article  CAS  Google Scholar 

  • Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Sahi C, Grover A (2009) Chymotrypsin protease inhibitor gene family in rice: genomic organization and evidence for the presence of a bidirectional promoter shared between two chymotrypsin protease inhibitor genes. Gene 428:9–19

    Article  CAS  PubMed  Google Scholar 

  • Solano R, Nieto C, Avila J, Canas L, Diaz I, Paz-Ares J (1995) Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB. Ph3) from Petunia hybrida. EMBO J 14:1773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stougaard J, Sandal NN, Grøn A, Kühle A, Marcker KA (1987) 5′Analysis of the soybean leghaemoglobin lbc 3 gene: regulatory elements required for promoter activity and organ specificity. EMBO J 6:3565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tatematsu K, Ward S, Leyser O, Kamiya Y, Nambara E (2005) Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis. Plant Physiol 138:757–766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor MG, Vasil V, Vasil IK (1993) Enhanced GUS gene expression in cereal/grass cell suspensions and immature embryos using the maize ubiquitin-based plasmid pAHC25. Plant Cell Rep 12:491–495

    Article  CAS  PubMed  Google Scholar 

  • Telang MA, Giri AP, Pyati PS, Gupta VS, Tegeder M, Franceschi VR (2009) Winged bean chymotrypsin inhibitors retard growth of Helicoverpa armigera. Gene 431:80–85

    Article  CAS  PubMed  Google Scholar 

  • Toyofuku K, T-a Umemura, Yamaguchi J (1998) Promoter elements required for sugar-repression of the RAmy3D gene for α-amylase in rice. FEBS Lett 428:275–280

    Article  CAS  PubMed  Google Scholar 

  • Valueva TA, Parfenov IA, Revina TA, Morozkina EV, Benevolensky SV (2012) Structure and properties of the potato chymotrypsin inhibitor. Plant Physiol Biochem PPB/Societe francaise de physiologie vegetale 52:83–90

    Article  CAS  Google Scholar 

  • Wang J, Shi ZY, Wan XS, Shen GZ, Zhang JL (2008) The expression pattern of a rice proteinase inhibitor gene OsPI8-1 implies its role in plant development. J Plant Physiol 165:1519–1529

    Article  CAS  PubMed  Google Scholar 

  • Wu CY, Washida H, Onodera Y, Harada K, Takaiwa F (2000) Quantitative nature of the prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal cis-element requirements for endosperm-specific gene expression. Plant J 23:415–421

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto YT, Taylor CG, Acedo GN, Cheng CL, Conkling MA (1991) Characterization of cis-acting sequences regulating root-specific gene expression in tobacco. Plant Cell 3:371–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yanagisawa S (2000) Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J 21:281–288

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell Online 13:1527–1540

    Article  CAS  Google Scholar 

  • Yuan JS, Reed A, Chen F, Stewart CN (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7:85

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao Z-Y, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D (2002) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breeding 8:323–333

Download references

Acknowledgments

This study was supported by the National Special Program for GMO Development of China (grant number 2013ZX08003-002).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rumei Chen.

Additional information

Communicated by J. S. Shin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1683 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, X., Li, J. et al. Isolation of a maize ZmCI-1B promoter and characterization of its activity in transgenic maize and tobacco. Plant Cell Rep 34, 1443–1457 (2015). https://doi.org/10.1007/s00299-015-1799-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1799-4

Keywords

Navigation