Skip to main content
Log in

Myb14, a direct activator of STS, is associated with resveratrol content variation in berry skin in two grape cultivars

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

High and low resveratrol (Res) contents in two cultivars are correlated with the expression abundance of Myb14 , which could directly activate transcriptional expression of stilbene synthase gene ( STS ).

Abstract

Resveratrol (3,5,4′-trihydroxystilbene) is one of the natural polyphenols produced by secondary metabolism in some plants. Stilbene synthase (STS) is the key enzyme for the final step of precursor formation of resveratrol (Res) in grapevines. In this study, we found that Res contents in ripe berry skin were completely different in two grape cultivars, namely, ‘Z168’ (Vitis monticola × Vitis riparia) with high-Res and ‘Jingzaojing’ (Vitis vinifera) with low-Res. Moreover, the level of expression of STS gene was higher in the ripe berry skin of ‘Z168’ than in that of ‘Jingzaojing’. To further investigate the underlying mechanisms, we conducted a co-expression analysis through transcriptomic data. We confirmed that Myb14, an R2R3 Myb transcription factor, is the direct regulator of STS by binding to Box-L5 motif. Moreover, the expression pattern of Myb14 is associated with the variation of Res content. To test this prediction, we conducted a number of experiments in vivo and in vitro. The expression patterns of Myb14 and STS in grapevine leaves were identical under a series of stimulus. Myb14 showed higher expression in the ripe berry skin of ‘Z168’ than in that of ‘Jingzaojing’. Yeast one-hybrid assay indicated that grapevine Myb14 could interact with the promoter of STS in vitro, and the transient overexpression of Myb14 promoted the expression of STS. Furthermore, co-expressing 35S::Myb14 in transgenic Arabidopsis could activate GUS expression promoted by STS promoter. Thus, Myb14 is the direct activator of STS, and its expression pattern is associated with Res content variation in grapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

STS:

Stilbene synthase

qRT-PCR:

Quantitative real-time polymerase chain reaction

BLAST:

Basic local alignment search tool

ORF:

Open reading frame

CaMV:

Cauli flower mosaic virus

GUS:

β-Glucuronidase

UV:

Ultra-violet

AbA:

Aureobasidin A

References

  • Adrian M, Jeandet P, Breuil A, Levite D, Debord S, Bessis R (2000) Assay of resveratrol and derivative stilbenes in wines by direct injection high performance liquid chromatography. Am J Enol Vitic 51(1):37–41

    CAS  Google Scholar 

  • Agarwal M, Hao Y, Kapoor A, Dong C-H, Fujii H, Zheng X, Zhu J-K (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281(49):37636–37645

    Article  PubMed  CAS  Google Scholar 

  • Alturfan AA, Tozan-Beceren A, Sehirli AO, Demiralp E, Sener G, Omurtag GZ (2011) Resveratrol ameliorates oxidative DNA damage and protects against acrylamide-induced oxidative stress in rats. Mol Biol Rep 4(39):4589–4596

    Google Scholar 

  • Chen Y, Chen Z, Kang J, Kang D, Gu H, Qin G (2013) AtMYB14 regulates cold tolerance in Arabidopsis. Plant Mol Biol Rep 31(1):87–97

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

  • Dash S, Van Hemert J, Hong L, Wise RP, Dickerson JA (2012) PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acid Res 40(D1):D1194–D1201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genom 8:429

    Article  Google Scholar 

  • Deluc LG, Decendit A, Papastamoulis Y, Merillon JM, Cushman JC, Cramer GR (2011) Water deficit increases stilbene metabolism in Cabernet Sauvignon berries. J Agric Food Chem 59(1):289–297

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ding Z, Li S, An X, Liu X, Qin H, Wang D (2009) Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics 36(1):17–29

    Article  PubMed  CAS  Google Scholar 

  • Eckermann C, Schroder G, Eckermann S, Strack D, Schmidt J, Schneider B, Schroder J (2003) Stilbenecarboxylate biosynthesis: a new function in the family of chalcone synthase-related proteins. Phytochemistry 62(3):271–286

    Article  PubMed  CAS  Google Scholar 

  • Fritzemeier K-H, Kindl H (1981) Coordinate induction by UV light of stilbene synthase, phenylalanine ammonia-lyase and cinnamate 4-hydroxylase in leaves of Vitaceae. Planta 151(1):48–52

    Article  PubMed  CAS  Google Scholar 

  • Gatto P, Vrhovsek U, Muth J, Segala C, Romualdi C, Fontana P, Pruefer D, Stefanini M, Moser C, Mattivi F (2008) Ripening and genotype control stilbene accumulation in healthy grapes. J Agric Food Chem 56(24):11773–11785

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Yamazaki M, Sugiyama M, Tanaka Y, Saito K (1997) Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens. Plant Mol Biol 35(6):915–927

    Article  PubMed  CAS  Google Scholar 

  • Grimmig B, Gonzalez-Perez MN, Leubner-Metzger G, Vogeli-Lange R, Meins F Jr, Hain R, Penuelas J, Heidenreich B, Langebartels C, Ernst D, Sandermann H Jr (2003) Ozone-induced gene expression occurs via ethylene-dependent and -independent signalling. Plant Mol Biol 51(4):599–607

    Article  PubMed  CAS  Google Scholar 

  • Höll J, Vannozzi A, Czemmel S, D’Onofrio C, Walker AR, Rausch T, Lucchin M, Boss PK, Dry IB, Bogs J (2013) The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell 25(10):4135–4149

    Article  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  PubMed  CAS  Google Scholar 

  • Jeandet P, Bessis R, Sbaghi M, Meunier P, Trollat P (1995) Resveratrol content of wines of different ages: relationship with fungal disease pressure in the vineyard. Am J Enol Vitic 46(1):1–4

    CAS  Google Scholar 

  • Jefferson RA, Kavanagh A (1987) GUS fusions: beta-glucuronidase as fusion marker in higher plants. EMBO J 6(13):3901–3907

    PubMed  CAS  PubMed Central  Google Scholar 

  • Langcake P, Pryce R (1976) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 9(1):77–86

    Article  CAS  Google Scholar 

  • Li X, Wu B, Wang L, Li S (2006) Extractable amounts of trans-resveratrol in seed and berry skin in Vitis evaluated at the germplasm level. J Agric Food Chem 54(23):8804–8811

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Liu C, Yang C, Wang L, Li S (2010) Effect of grape genotype and tissue type on callus growth and production of resveratrols and their piceids after UV-C irradiation. Food Chem 122(3):475–481

    Article  CAS  Google Scholar 

  • Liu Z, Zhuang C, Sheng S, Shao L, Zhao W, Zhao S (2011) Overexpression of a resveratrol synthase gene (PcRS) from Polygonum cuspidatum in transgenic Arabidopsis causes the accumulation of trans-piceid with antifungal activity. Plant Cell Rep 30(11):2027–2036

    Article  PubMed  CAS  Google Scholar 

  • Maeda K, Kimura S, Demura T, Takeda J, Ozeki Y (2005) DcMYB1 acts as a transcriptional activator of the carrot phenylalanine ammonia-lyase gene (DcPAL1) in response to elicitor treatment, UV-B irradiation and the dilution effect. Plant Mol Biol 59(5):739–752

    Article  PubMed  CAS  Google Scholar 

  • Matus JT, Aquea F, Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendelsohn AR, Larrick JW (2011) Rapamycin as an antiaging therapeutic?: targeting mammalian target of rapamycin to treat Hutchinson-Gilford progeria and neurodegenerative diseases. Rejuvenation Res 14(4):437–441

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • O’Connor DJ, Wong RW, Rabie AB (2011) Resveratrol inhibits periodontal pathogens in vitro. Phytother Res 25(11):1727–1731

    Article  PubMed  Google Scholar 

  • Richter H, Pezet R, Viret O, Gindro K (2006) Characterization of 3 new partial stilbene synthase genes out of over 20 expressed in Vitis vinifera during the interaction with Plasmopara viticola. Physiol Mol Plant Pathol 67:248–260

    Article  Google Scholar 

  • Rolfs CH, Kindl H (1984) Stilbene synthase and chalcone synthase: two different constitutive enzymes in cultured cells of Picea excelsa. Plant Physiol 75(2):489–492

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rolfs C, Fritzemeier K, Kindl H (1981) Cultured cells of Arachis hypogaea susceptible to induction of stilbene synthase (resveratrol-forming). Plant Cell Rep 1(2):83–85

    Article  PubMed  CAS  Google Scholar 

  • Santos-Rosa M, Poutaraud A, Merdinoglu D, Mestre P (2008) Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Rep 27(6):1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Schroder J, Schroder G (1990) Stilbene and chalcone synthases: related enzymes with key functions in plant-specific pathways. Z Naturforsch C 45(1–2):1–8

    PubMed  CAS  Google Scholar 

  • Schubert R, Fischer R, Hain R, Schreier PH, Bahnweg G, Ernst D, Sandermann H Jr (1997) An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence. Plant Mol Biol 34(3):417–426

    Article  PubMed  CAS  Google Scholar 

  • Selma MV, Freitas PM, Almela L, Gonzalez-Barrio R, Espin JC, Suslow T, Tomas-Barberan F, Gil MI (2008) Ultraviolet-C and induced stilbenes control ochratoxigenic Aspergillus in grapes. J Agric Food Chem 56(21):9990–9996

    Article  PubMed  CAS  Google Scholar 

  • Shumakova OA, Manyakhin AY, Kiselev KV (2011) Resveratrol content and expression of phenylalanine ammonia-lyase and stilbene synthase genes in cell cultures of Vitis amurensis treated with coumaric acid. Appl Biochem Biotechnol 165(5–6):1427–1436

    Article  PubMed  CAS  Google Scholar 

  • Sotheeswaran S, Pasupathy V (1993) Distribution of resveratrol oligomers in plants. Phytochemistry 32:1083–1092

    Article  CAS  Google Scholar 

  • Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 24(5):743–755

    Article  PubMed  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematte L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2(12):e1326

    Article  PubMed  PubMed Central  Google Scholar 

  • Versari A, Parpinello GP, Tornielli GB, Ferrarini R, Giulivo C (2001) Stilbene compounds and stilbene synthase expression during ripening, wilting, and UV treatment in grape cv. Corvina. J Agric Food Chem 49(11):5531–5536

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Tang K, Yang H-R, Wen P-F, Zhang P, Wang H-L, Huang W-D (2010) Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiol and Bioch 48 (2):142–152

  • Wang N, Fang L, Xin H, Wang L, Li S (2012) Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC Plant Biol 12(1):148

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu W, Yu Y, Zhou Q, Ding J, Dai L, Xie X, Xu Y, Zhang C, Wang Y (2011) Expression pattern, genomic structure, and promoter analysis of the gene encoding stilbene synthase from Chinese wild Vitis pseudoreticulata. J Exp Bot 62(8):2745–2761

    Article  PubMed  CAS  Google Scholar 

  • Zottini M, Barizza E, Costa A, Formentin E, Ruberti C, Carimi F, Lo Schiavo F (2008) Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Rep 27(5):845–853

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the National Natural Science Foundation of China (NSFC Accession No. 31171931) and the National Natural Science Foundation of Hubei Province (No. 2011CDB409).

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nian Wang or Shaohua Li.

Additional information

Communicated by Amit Dhingra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2014_1642_MOESM1_ESM.tif

Fig. S1 Motif prediction of VvMyb14 promoter sequence. Red double lines show cis-element in the Myb14 promoter region. The name of each cis-element and its predicted binding TF is shown by the corresponding arrow. (TIFF 615 kb)

Fig. S2 Amino acid sequence alignment of DcMyb1 with Vitis Myb14-1, Myb14-2, and VvMyb14 (TIFF 1641 kb)

299_2014_1642_MOESM3_ESM.tif

Fig. S3 Phylogenetic relationship between DcMyb1 and V. vinifera R2R3 Myb gene family proteins. Multiple sequence alignment was performed using NTI Vector 11.0, and phylogenetic tree analysis was constructed by neighbor-joining method using the amino acid sequence of each Myb protein by MEGA 5.0. The numbers beside the branches represent bootstrap values based on 1,000 replications. The red box shows that VvMyb14 (GSVIVT01028328001) has the highest similarity to DcMyb1 (GenBank: AB218778.1) (TIFF 2062 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Hou, Y., Wang, L. et al. Myb14, a direct activator of STS, is associated with resveratrol content variation in berry skin in two grape cultivars. Plant Cell Rep 33, 1629–1640 (2014). https://doi.org/10.1007/s00299-014-1642-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1642-3

Keywords

Navigation