Skip to main content
Log in

Fine mapping of BH1, a gene controlling lemma and palea development in rice

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A new rice floral organ mutant bh1 , had a negative effect on grain yield. BH1 was fine mapped to 87.5 kb on chr2. A 55 kb chromosome segment was deleted in bh1.

Abstract

The cereal spikelet is enclosed by the lemma and palea. The lemma and palea of the floral mutant designated bh1, a selection from a T-DNA library generated from the rice cultivar Asominori, takes on an abnormal curve-shaped appearance only late in floral development, finally forming a beak-shaped hull. The mutation had a negative effect on thousand grain weight, seed set rate and germination rate. Genetic analysis indicated that the mutant phenotype was determined by a single recessive gene. Through map-based approach, BH1 gene was finally located to a ~87.5-kbp region on the long arm of chromosome 2. An analysis of the gene content of this region indicated that the mutation involves the loss of a 55-kbp stretch, harboring four open reading frames. Transcription profiling based on qRT-PCR revealed that the genes OsMADS1, OsMADS14, OsMADS15, OsMADS18, REP1, CFO1, and DL, all of which are also involved in lemma and palea development and identity specification, were down-regulated in the bh1 mutant. BH1 is therefore an important floral organ development gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ciaffi M, Paolacci AR, Tanzarella OA, Porceddu E (2011) Molecular aspects of flower development in grasses. Sex Plant Reprod 24(4):247–282

    Article  PubMed  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940

    Article  PubMed  CAS  Google Scholar 

  • Dreni L, Jacchia S, Fornara F, Fornari M, Ouwerkerk PB, An G, Colombo L, Kater MM (2007) The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant J 52:690–699

    Article  PubMed  CAS  Google Scholar 

  • Fornara F, Parenicová L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, Altamura MM, Colombo L, Kater MM (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS-box genes. Plant Physiol 135:2207–2219

    Article  PubMed  CAS  Google Scholar 

  • Immink RG, Kaufmann K, Angenent GC (2010) The ‘ABC’ of MADS domain protein behaviour and interactions. Semin Cell Dev Biol 21:87–93

    Article  PubMed  CAS  Google Scholar 

  • Itoh JI, Nonomura KI, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23–47

    Article  PubMed  CAS  Google Scholar 

  • Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, Lee YH, Cho YG, An G (2000) Leaf hull sterile1 is a homeotic mutation in a rice MADS-box gene affecting rice flower development. Plant Cell 12:871–884

    PubMed  CAS  Google Scholar 

  • Kang HG, Jeon JS, Lee S, An G (1998) Identification of class B and class C floral organ identity genes from rice plants. Plant Mol Biol 38:1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Kater MM, Dreni L, Colombo L (2006) Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot 57:3433–3444

    Article  PubMed  CAS  Google Scholar 

  • Kyozuka J, Shimamoto K (2002) Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol 43:130–135

    Article  PubMed  CAS  Google Scholar 

  • Kyozuka J, Kobayashi T, Morita M, Shimamoto K (2000) Spatially and temporally regulated expression of rice MADS-box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol 41:710–718

    Article  PubMed  CAS  Google Scholar 

  • Li A, Zhang Y, Wu X, Tang W, Wu R, Dai Z, Liu G, Zhang H, Wu C, Chen G, Pan X (2008) DH1, a LOB domain-like protein required for glume formation in rice. Plant Mol Biol 66:491–502

    Article  PubMed  CAS  Google Scholar 

  • Li H, Liang W, Jia R, Yin C, Zong J, Kong H, Zhang D (2010) The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Res 20:299–313

    Article  PubMed  CAS  Google Scholar 

  • Li H, Liang W, Hu Y, Zhu L, Yin C, Xu J, Dreni L, Kater M, Zhang D (2011) Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. Plant Cell 23:2536–2552

    Article  PubMed  CAS  Google Scholar 

  • Li XJ, Sun LJ, Tan LB, Liu FX, Zhu ZF, Fu YC, Sun XY, Sun XW, Xie DX, Sun CQ (2012) TH1, a DUF640 domain-like gene controls lemma and palea development in rice. Plant Mol Biol 78:351–359

    Article  PubMed  CAS  Google Scholar 

  • Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Simon R, Weigel D (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105:793–803

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Dee ZP, Wittich P, Enrico Pè M, Rigola D, Del Buono I, Gorla MS, Kater MM, Colombo L (1999) OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev Genet 25:237–244

    Article  PubMed  CAS  Google Scholar 

  • Luo Q, Zhou KD, Zhao XF, Zeng QC, Xia HA, Zhai WX, Xu JC, Wu XJ, Yang HS, Zhu LH (2005) Identification and fine mapping of a mutant gene for palealess spikelet in rice. Planta 221:222–230

    Article  PubMed  CAS  Google Scholar 

  • Ma XD, Cheng ZJ, Wu FQ, Jin MN, Zhang LG, Zhou F, Wang JL, Zhou KN, Ma J, Lin QB, Lei CL, Wan JM (2012) BEAK LIKE SPIKELET1 is required for lateral development of lemma and palea in rice. Plant Mol Biol Rep 31(1):98–108

    Article  Google Scholar 

  • Moon YH, Kang HG, Jung JY, Jeon JS, Sung SK, An G (1999) Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system. Plant Physiol 120:1193–1204

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130:705–718

    Article  PubMed  CAS  Google Scholar 

  • Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H (2009) MOSAIC FLORAL ORGANS1, an AGL6-like MADS-box gene, regulates floral organ identity and meristem fate in rice. Plant Cell 21:3008–3025

    Article  PubMed  CAS  Google Scholar 

  • Pelucchi N, Fornara F, Favalli C, Masiero S, Lago C, Enrico Pè M, Colombo L, Kater MM (2002) Comparative analysis of rice MADS-box genes expressed during flower development. Sex Plant Reprod 15:113–122

    Article  CAS  Google Scholar 

  • Prasad K, Vijayraghavan U (2003) Double-stranded RNA interference of a rice PI/GLO paralog OsMADS2, uncovers its second-whorl-specific function in floral organ patterning. Genetics 165:2301–2305

    PubMed  CAS  Google Scholar 

  • Prasad K, Parameswaran S, Vijayraghavan U (2005) OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J 43:915–928

    Article  PubMed  CAS  Google Scholar 

  • Ren DY, Li YF, Wang Z, Xu FF, Guo S, Zhao FM, Sang XC, Ling YH, He GH (2012) Identification and gene mapping of a multi-floret spikelet 1 (mfs1) mutant associated with spikelet development in rice. J Integr Agric 11:1574–1579

    Article  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. Plant Mol Biol 5:69–76

    Article  Google Scholar 

  • Sang X, Li Y, Luo Z, Ren D, Fang L, Wang N, Zhao F, Ling Y, Yang Z, Liu Y, He G (2012) CHIMERIC FLORAL ORGANS1, encoding a monocot-specific MADS-box protein, regulates floral organ identity in rice. Plant Physiol 160:788–807

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Theissen G, Saedler H (2001) Plant biology: floral quartets. Nature 409:469–471

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Sang XC, Li YF, Yang ZL, Zhao FM, Ling YH, Zhang ZS, He GH (2010) Identification and gene mapping of a novel mutant supernumerary lodicules (snl) in rice. J Integr Plant Biol 52:265–272

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Hirano HY (2006) Function and diversification of MADS-box genes in rice. Sci World J 6:1923–1932

    Article  Google Scholar 

  • Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hirano HY (2006) Functional diversification of the two C-class genes OsMADS3 and OsMADS58 in Oryza sativa. Plant Cell 18:15–18

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Nagato Y (2011) Flower development in rice. J Exp Bot 62(14):4719–4730

    Article  PubMed  CAS  Google Scholar 

  • Yuan Z, Gao S, Xue DW, Luo D, Li LT, Ding SY, Yao X, Wilson ZA, Qian Q, Zhang DB (2009) RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiol 149:235–244

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Shen BZ, Dai XK, Mei MH, Saghai MA, Li ZB (1994) Using bulked extremes and recessive classes to map genes for photoperiod-sensitive genic male sterility in rice. Proc Natl Acad Sci 91:8675–8679

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support given by the Natural Science Foundation of China (31201195), the Zhejiang province Science and Technology Project (2010C32061), the Chinese government “863” Program (2011AA10A101, 2012AA101101), the National S and T Major Project (2011ZX08001-001, 2011ZX08001-002 and 2011ZX08001-006), and the Central level, non-profit, scientific research institutes basic R and D operations Special Fund (2012RG002-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoqing Tang or Peisong Hu.

Additional information

Communicated by Z.-Y. Wang.

X. Wei and X. Zhang contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, X., Zhang, X., Shao, G. et al. Fine mapping of BH1, a gene controlling lemma and palea development in rice. Plant Cell Rep 32, 1455–1463 (2013). https://doi.org/10.1007/s00299-013-1457-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1457-7

Keywords

Navigation