Skip to main content
Log in

DH1, a LOB domain-like protein required for glume formation in rice

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

T-DNA tagging is a high throughput strategy for identifying and cloning functional genes in plants. In this study, we screened 4416 lab-created T1 rice T-DNA tagged lines and identified a mutant, designated dh1 (degenerated hull1), with phenotype of degenerated hull and naked pistils and stamens. Approximately 60% florets on the dh1 panicle defected in forming normal palea and lemma. Instead, they formed degenerative velum-like or filamentous organs accompanying with the lack of lodicules, stamens and pistils at different degree. A 361 bp of genomic sequence flanking the T-DNA isolated using TAIL-PCR (Thermal asymmetric interlaced PCR) co-segregated with the mutation phenotype. Results of blastn and gene prediction revealed the T-DNA inserted into the promoter region of a function-predicted gene at 283 bp upstream of its transcription start site (TSS). The predicted gene encoded a LOB (Lateral Organ Boundaries) domain-like protein. RT-PCR analyses indicated the transcription level of target candidate gene, DH1, decreased significantly in dh1 mutant. RNAi aimed at DH1 in wild type plants could partially result in the mutation phenotype of dh1. DH1 could also rescue the mutation phenotype in the complement experiment. The result of transformation by a fused expression vector, pDH1::GFP, revealed that DH1 had the keen spatial and temporal characteristics of expressing at axillary bud, young panicle and floral organs but not at root, leaf, node and culm, and strongly expressing at young tissues but weakly at mature organs. The dh1 presented severer mutation phenotype under relatively longer daylight than under shorter daylight implied that shorter daylight induced the expression of gene(s) redundant to DH1 in function and partially compensated for the loss-of-function. It is the first time to report the LOB-domain gene participating in the development of floral organs in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DH1 :

DEGENERATED HULL1

TAIL-PCR:

Thermal asymmetric interlaced PCR

LOB:

Lateral organ boundaries

LBD:

LOB-domain

SAM:

Shoot apical meristem

TSS:

Transcription start site

References

  • Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular and genetic analyses of Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell 5:569–579

    Article  PubMed  CAS  Google Scholar 

  • Bai SL, Liu YS, Sun JS, Xie R (2000) Identification of the mutant of split rice spikelet. Acta Bot Sin 42:122–125

    CAS  Google Scholar 

  • Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489

    Article  PubMed  CAS  Google Scholar 

  • Bossinger G, Rohde W, Lundquist U (1992) Genetics of barley development: mutant phenotype and molecular aspects. In: Shewry PR (ed) In barley: genetics, biochemistry, molecular biology, and biotechnology. CAB international, Wallingford, pp 231–263

    Google Scholar 

  • Bowman JL, Eshed Y (2000) Formation and maintenance of the shoot apical meristem. Trends Plant Sci 5:110–115

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119:721–743

    CAS  Google Scholar 

  • Bowman JL, Smyth D, Meyerowitz EM (1991) Genetic interactions among floral homeotic gene of Arabidopsis. Development 112:1–20

    PubMed  CAS  Google Scholar 

  • Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–619

    Article  PubMed  CAS  Google Scholar 

  • Carpenter R, Coen ES (1990) Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev 4:1483–1493

    Article  PubMed  CAS  Google Scholar 

  • Chalfun-Junior A, Franken J, Mes JJ, Marsch-Martinez N, Pereira A, Angenent GC (2005) ASYMMETRIC LEAVES-LIKE1 gene, a member of the AS2/LOB family, controls proximal-distal patterning in Arabidopsis petals. Plant Mol Biol 57:559–575

    Article  PubMed  CAS  Google Scholar 

  • Chen ZX, Wu JG, Ding WN, Chen HM, Wu P, Shi CH (2006) Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice. Planta 223:882–890

    Article  PubMed  CAS  Google Scholar 

  • Clark SE (2001) Meristems: start your signaling. Curr Opin Plant Biol 4:28–32

    Article  PubMed  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the wholes: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Colombo L, Franken J, Koetje E, Went J, Dong HJM, Angenent GC, Tunen AJ (1995) The petunis MADS box gene FBP11 determines ovule identity. Plant Cell 7:1859–1868

    Article  PubMed  CAS  Google Scholar 

  • Cook RJ (1998) Toward a successful multinational crop plant genome initiative. Proc Natl Acad Sci USA 95:1993–1995

    Article  PubMed  CAS  Google Scholar 

  • Delseny M (2004) Re-evaluating the relevance of ancestral shared synteny as a tool for crop improvement. Curr Opin Plant Biol 7:126–131

    Article  PubMed  Google Scholar 

  • Hake S, Ori N (2002) Plant morphogenesis and KNOX genes. Nat Genet 31:121–122

    Article  PubMed  CAS  Google Scholar 

  • Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H (2005) Crown rootless1, which is essential for crown root formation in rice, is a target of an auxin response factor in auxin signaling. Plant Cell 17:1387–1396

    Article  PubMed  CAS  Google Scholar 

  • Irish VF, Sussex LM (1990) Function of the APETALAI gene during Arabidopsis floral development. Plant Cell 2:741–754

    Article  PubMed  CAS  Google Scholar 

  • Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, Tsukaya H, Hasebe M, Soma T, Ikezaki M, Machida C, Machida Y (2002) The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol 43:467–478

    Article  PubMed  CAS  Google Scholar 

  • Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413

    CAS  Google Scholar 

  • Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, Lee YH, Cho YG, An G (2000) Leafy hull sterile1 is a homeotic mutation in a rice MADS-box gene affecting rice flower development. Plant Cell 12:871–884

    Article  PubMed  CAS  Google Scholar 

  • Jofuku KD, Boer BG, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    Article  PubMed  CAS  Google Scholar 

  • Kang HG, An G (1997) Isolation and characterization of a rice MADS-box gene belonging to the AGL2 gene family. Mol Cell 7:45–51

    CAS  Google Scholar 

  • Kang HG, Jeon JS, Lee S, An G (1998) Identification of class B and class C floral organ identity genes from rice. Plant Mol Biol 38:1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Keck E, McSteen P, Carpenter R, Coen E (2003) Separation of genetic functions controlling organ identity in flowers. EMBO J 22:1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Khush GS, Librojo AJ (1985) Naked seed rice (nsr) is allelic to op and lhs. Rice Genet Newslett 2:71

    Google Scholar 

  • Kyozuka J, Kobayashi T, Morita M, Shimamoto K (2000) Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis Class A, B and C genes. Plant Cell Physiol 41:710–718

    PubMed  CAS  Google Scholar 

  • Lin WC, Shuai B, Springer PS (2003) The Arabidopsis lateral organ boundaries-domain gene ASYMMETRIC LEAVES2 functions in the repression on KNOX gene expression and in adaxial-abaxial patterning. Plant Cell 15:2241–2252

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  PubMed  CAS  Google Scholar 

  • Liu KD, Wang J, Li HB, Xu CG, Liu AM, Li XH, Zhang Q (1997) A genome-wide analysis of wide compatibility in rice and the precise location of the S5 locus in the molecular map. Theor Appl Genet 95:809–814

    Article  CAS  Google Scholar 

  • Liu HJ, Wang SF, Yu XB, Yu J, He XW, Zhang SL, Shou HX, Wu P (2005) ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J 43:47–56

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    Article  PubMed  CAS  Google Scholar 

  • Luo Q, Zhou KD, Zhao XF, Zeng QC, Xia HG, Zhai WX, Xu JC, Wu XJ, Yang HS, Zhu LH (2005) Identification and fine mapping of a mutant gene for palealess spikelet in rice. Planta 221:222–230

    Article  PubMed  CAS  Google Scholar 

  • Ma H, dePamphilis CD (2000) The ABCs of floral evolution. Cell 101:5–8

    Article  PubMed  CAS  Google Scholar 

  • Mandel MA, Gustafson-Brown C (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA-1. Nature 360:273–277

    Article  PubMed  CAS  Google Scholar 

  • Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2003) SUPERWOMAN1 and DROOPING genes control floral organ identity in rice. Development 130:705–718

    Article  PubMed  CAS  Google Scholar 

  • Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2:186–195

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    Article  PubMed  CAS  Google Scholar 

  • Sawa S, Watanabe K, Goto K, Liu YG, Shibata D, Kanaya E, Morita EH, Okada K (1999) FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev 13:1079–1088

    PubMed  CAS  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  PubMed  CAS  Google Scholar 

  • Schwarz-Sommer Z, Huijser P, Nacken W, Seadler H, Sommer H (1990) Genetic control of flower development: homeotic genes in Antirrhinum majus. Science 250:931–936

    Article  PubMed  CAS  Google Scholar 

  • Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y (2001) The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamia, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128:1771–1783

    PubMed  CAS  Google Scholar 

  • Serrano-Cartagena J, Robles P, Ponce MR, Micol JL (1999) Genetic analysis of leaf from mutants from the Arabidopsis information service collection. Mol Gen Genet 261:725–739

    Article  PubMed  CAS  Google Scholar 

  • Shinozuka Y, Kojima S, Shomura A, Ichimura H, Yano M, Yamamoto K, Sasaki T (1999) Isolation and characterization of rice MADS box gene homologues and their RFLP mapping. DNA Res 6:123–129

    Article  PubMed  CAS  Google Scholar 

  • Shuai B, Reynaga-Peña CG, Springer PS (2002) The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol 129:747–761

    Article  PubMed  CAS  Google Scholar 

  • Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126:4117–4128

    PubMed  CAS  Google Scholar 

  • Sun Y, Zhang W, Li F, Guo Y, Liu T, Huang H (2000) Identification and genetic mapping of four novel genes that regulate leaf development in Arabidopsis. Cell Res 10:325–335

    Article  Google Scholar 

  • Takada S, Tasaka M (2002) Embryonic shoot apical meristem formation in higher plants. J Plant Res 115:411–417

    Article  PubMed  CAS  Google Scholar 

  • Theissen G (2000) Plant biology. Shattering development. Nature 404:711–713

    Article  PubMed  CAS  Google Scholar 

  • Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  CAS  Google Scholar 

  • Theissen G, Saedler H (2001) Plant biology. Floral quarters. Nature 409:469–471

    Article  PubMed  CAS  Google Scholar 

  • Theissen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43:484–516

    PubMed  CAS  Google Scholar 

  • Timmermans MCP, Hudson A, Becraft PW, Nelson T (1999) ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordial. Science 284:151–153

    Article  PubMed  CAS  Google Scholar 

  • Tsiantis M, Schneeberger R, Golz JF, Freeling M, Langdale JA (1999) The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 284:154–156

    Article  PubMed  CAS  Google Scholar 

  • Veit B (2004) Determination of cell fate in apical meristems. Curr Opin Plant Biol 7:57–64

    Article  PubMed  CAS  Google Scholar 

  • Waites R, Selvadurai HRN, Oliver IR, Hudson A (1998) The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93:779–789

    Article  PubMed  CAS  Google Scholar 

  • Wu CY, Li XJ, Yuan WY, Chen G, Kilian A, Li XH, Zhou DX, Wang SP, Zhang QF (2003) Development of enhancer trap lines for functional analysis of the rice genome. Plant J 35:418–427

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Xu Y, Dong AW, Sun Y, Pi LM, Xu YQ, Huang H (2003) Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA1A functions in specifying leaf adaxial identity. Development 130:4097–4107

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Yu XB, Wu P (2006) Comparison and evolution analysis of two rice subspecies lateral organ boundaries domain gene family and their evolutionary characterization from Arabidopsis. Mol Phylogenet Evol 39:248–262

    Article  PubMed  CAS  Google Scholar 

  • Zhang XM, Li SG, Wang YP, Wu XJ (2004) Morphogenesis, anatomical observation and genetic analysis of a long hull floral organ mutant in rice. Acta Bot Sin 46:451–456

    Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Qifa Zhang (Huazhong Agricultural University, China) for his significant instruction in this research, Dr. Wencai Yang (China Agricultural University, China) for his critical reading and correction in this paper, Prof. Yongjun Lin (Huazhong Agricultural University, China) for his generous gifts of vectors, pCAMBIA2300, Hellsgate2 and pCAMBIA1381-GFP, and Honghong Hu (Huazhong Agricultural University, China) for the help in constructing RNAi vector. This work was supported by the grant from the National Special Key Project on Functional Genomics and Biochip of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Pan.

Additional information

A. Li and Y. Zhang contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 2629 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, A., Zhang, Y., Wu, X. et al. DH1, a LOB domain-like protein required for glume formation in rice. Plant Mol Biol 66, 491–502 (2008). https://doi.org/10.1007/s11103-007-9283-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9283-3

Keywords

Navigation