Skip to main content
Log in

Accumulation pattern of dehydrins during sugarcane (var. SP80.3280) somatic embryogenesis

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The objective of the present study was to determine dehydrin protein levels in sugarcane var. SP80-3280 during somatic embryogenesis. Dehydrins from embryogenic and non-embryogenic cell cultures were analyzed using western blot and in situ immunolocalization microscopy. Both techniques employ antibodies raised against a highly conserved lysine-rich 15-amino acid sequence termed the K-domain, which is extensively used to recognize proteins immunologically related to the dehydrin family. In embryogenic cultures, western blot analysis of the heat-stable protein fraction revealed eleven major bands ranging from 52 to 17 kDa. They were already visible on the first days, gradually increasing until reaching peak values around day 14, when organogenesis begins, to later decrease in concurrence with the appearance of green plantlets (around day 28). These fluctuations indicate that this pattern of accumulation is under developmental control. Dehydrins were mainly immunolocalized in the nuclei. A phosphatase treatment of protein extracts caused a mobility shift of the 52, 49, and 43 kDa dehydrin bands suggesting a putative modulation mechanism based on protein phosphorylation. In sugarcane embryogenic cultures, presence of dehydrins is a novel finding. Dehydrins were absent in non-embryogenic cultures. The novel findings regarding accumulation, nuclear localization, and phosphorylation of dehydrins provide a starting point for further research on the role of these proteins in the induction and/or maintenance of embryogenesis.

Key message The novel findings regarding accumulation, nuclear localization, and phosphorylation of dehydrins provide a starting point for further research on the role of these proteins in the induction and/or maintenance of embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Battaglia M, Olivera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias A (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  PubMed  CAS  Google Scholar 

  • Blanco MA, Nieves N, Sánchez M, Borroto CG, Castillo R, González JL, Escalona M, Báez E, Hernández Z (1997) Protein changes associated with plant regeneration in embryogenic calli of sugarcane (Saccharum sp.). Plant Cell Tissue Org Cult 51:153–158

    Article  Google Scholar 

  • Borovskii GB, Stupnikova IV, Antipina AI, Vladimirova SV, Voinikov VK (2002) Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol 2:5. http://www.biomedcentral.com/1471-2229/2/5

  • Bozzo S, Retamal C (1991) Gel-perfect: geles unidimensionales. Un nuevo método densitométrico para computadores personales. Arch Biol Med Exp 24:R.181

    Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pagès M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026

    Article  PubMed  CAS  Google Scholar 

  • Cidade DA, García P, Duarte Ro AC, Sacheto-Martins G, Mansur E (2006) Morfogênese in vitro de variedades brasileiras de cana-de-açúcar. Pesq Agropecu Bras 41:385–391

    Article  Google Scholar 

  • Close TJ, Lammers PJ (1993) An osmotic stress protein of cyanobacteria is immunologically related to plant dehydrins. Plant Physiol 101:773–779

    Article  PubMed  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    PubMed  CAS  Google Scholar 

  • Dure L (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369

    Article  PubMed  CAS  Google Scholar 

  • Egerton-Warburton LM, Balsamo RA, Close TJ (1997) Temporal accumulation and ultrastructural localization of dehydrins in Zea mays. Physiol Plant 101:545–555

    Article  CAS  Google Scholar 

  • Falco MC, Januzzi Mendes BM, Tulman Neto A, Appezzato da Glória B (1996) Histological characterization of in vitro regeneration of Saccharum sp. Rev Bras Fisiol Veg 8:93–97

    Google Scholar 

  • Gandonou C, Errabii T, Abrini J, Idaomar M, Chibi F, Skali SN (2005) Effect of genotype on callus induction and plant regeneration from leaf explants of sugarcane (Saccharum sp.). Afr J Biotechnol 4(11):1250–1255

    Google Scholar 

  • Giordani T, Natali L, D’Ercole A, Pugliesi C, Fambrini M, Vernieri P, Vitagliano C, Cavallini A (1999) Expression of a dehydrin gene during embryo development and drought stress in ABA-deficient mutants of sunflower (Helianthus annuus L.). Plant Mol Biol 39:739–748

    Article  PubMed  CAS  Google Scholar 

  • Goday A, Jensen AB, Culianezmacia FA, Alba MM, Figueras M, Serratosa J, Torrent M, Pagès M (1994) The maize abscisic acid-responsive protein RAB17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell 6:351–360

    PubMed  CAS  Google Scholar 

  • Guiderdoni E (1986a) L′embryogènese somatique des explants foliaires de canne a sucre (Saccharumsp.) cultivés in vitro. I-Initiatiation des cultures. L′Agronomie Tropicale 41:50–59

    Google Scholar 

  • Guiderdoni E (1986b) L′embryogènese somatique des explants foliaires de canne a sucre (Saccharumsp.) cultivés in vitro. II-Ëtude anatomique de la morphogenèse. L′Agronomie Tropicale 41:160–166

    Google Scholar 

  • Guiderdoni E, Demarly Y (1988) Histology of somatic embryogenesis in cultured leaf segments of sugarcane plantlets. Plant Cell Tissue Organ Cult 14:71–88

    Article  Google Scholar 

  • Harris KF, Pesic-Van Esbroeck Z, Duffus JE (1995) Moderate-temperature polymerization of LR White in a nitrogen atmosphere. Microsc Res Tech 32:264–265

    Article  PubMed  CAS  Google Scholar 

  • Heyen BJ, Alsheikh MK, Smith EA, Torvik CF, Seals DF, Randall SK (2002) The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol 130:675–687

    Article  PubMed  CAS  Google Scholar 

  • Ho W, Vasil IK (1983a) Somatic embryogenesis in sugarcane (Saccharum officinarum L.) I. The morphology and physiology of callus formation and the ontogeny of somatic embryos. Protoplasma 118:169–180

    Article  Google Scholar 

  • Ho W, Vasil IK (1983b) Somatic embryogenesis in sugarcane (Saccharum officinarum L.): growth and regeneration from embryogenic cell suspension cultures. Ann Bot 51:719–726

    Google Scholar 

  • Houde M, Danyluk J, Laliberte JF, Rassart E, Dhindsa RS, Sarhan F (1995) Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold-acclimation in wheat. Plant Physiol 99:1381–1387

    Article  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999a) Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol 120:237–244

    Article  PubMed  CAS  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999b) Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc Natl Acad Sci 96:13566–13570

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Wang Y (2004) β-Elimination coupled with tandem mass spectrometry for the identification of in vivo and in vitro phosphorylation sites in maize dehydrin DHN1 protein. Biochemistry 43(49):15567–15576

    Article  PubMed  CAS  Google Scholar 

  • Ko S, Tan S-K, Kamada H (2006) Characterization of a dehydrin-like protein (ECPP-44) relating to somatic embryogenesis in carrot. Plant Mol Biol Rep 24:253–254

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lakshmanan P (2006) Somatic embryogenesis in sugarcane—an addendum to the invited review “Sugarcane biotechnology: the challenges and opportunities”. In Vitro Cell Dev Biol Plant 42:201–205

    CAS  Google Scholar 

  • Linacero R, López Bilbao MG, Vázquez AM (2001) Expression of different abscisic acid-responsive genes during somatic embryogenesis in sugarcane (Saccharum officinarum). Protoplasma 217:197–204

    Article  Google Scholar 

  • Neven L, Haskell GDW, Hofig A, Li QB, Guy CL (1993) Characterization of a spinach gene responsive to low-temperature and water-stress. Plant Mol Biol 21:291–305

    Article  PubMed  CAS  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

    Article  PubMed  CAS  Google Scholar 

  • Plana M, Itarte E, Eritja R, Goday A, Pagès M, Martinez MC (1991) Phosphorylation of maize RAB-17 protein by casein kinase-2. J Biol Chem 266:22510–22514

    PubMed  CAS  Google Scholar 

  • Prego I, Maldonado S, Otegui M (1998) Seed structure and localization of reserves in Chenopodium quinoa. Ann Bot 82:481–488

    Google Scholar 

  • Retamal CA, Thiebaut P, Alves EW (1999) Protein purification from polyacrylamide gels bysonication extraction. Anal Biochem 268:15–20

    Article  PubMed  CAS  Google Scholar 

  • Riera M, Figueras M, López C, Goday A, Pagès M (2004) Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proc Natl Acad Sci 101(26):9879–9884

    Article  PubMed  CAS  Google Scholar 

  • Rinne PLH, Kaikuranta PLM, van der Plas LHW, van der Schoot C (1999) Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209:377–388

    Article  PubMed  CAS  Google Scholar 

  • Rorat T, Grygorowicz WJ, Irzykowski W, Rey P (2004) Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage under vegetative growth. Planta 218:878–885

    Article  PubMed  CAS  Google Scholar 

  • Rorat T (2006) Plant dehydrins tissue location, structure and function. Cell Mol Biol Lett 11:536–556. doi:10.2478/s11658-006-0044-0

    Article  PubMed  CAS  Google Scholar 

  • Spence J (2001) Plant histology. In: Hawes C, Satiat-Jeunemaitre B (eds) Plant cell biology, 2nd edn. Oxford University Press, Oxford, pp 189–206

    Google Scholar 

  • Stanca AM, Crosatti C, Grossi M, Lacerenza NG, Rizza F, Cattivelli L (1996) Molecular adaptation of barley to cold and drought conditions. Euphytica 92:215–219

    Article  Google Scholar 

  • Šunderlíková V, Wilhelm E (2002) High accumulation of legumin and LEA-like mRNAs during maturation is associated with increased conversion frequency of somatic embryos from pedunculate oak (Quercus robur L.). Protoplasma 220:97–103

    Article  PubMed  Google Scholar 

  • Tan S-K, Kamada H (2000) Initial identification of a phosphoprotein that appears to be involved in the induction of somatic embryogenesis in carrots. Plant Cell Rep 19:739–747

    Article  CAS  Google Scholar 

  • Tan S-K, Sage-Ono K, Kamada H (2000) Cloning and characterization of ECPP44, a cDNA encoding a 44-kilodalton phosphoprotein relating to somatic embryogenesis in carrot. Plant Biotechnol 17:61–68

    Article  CAS  Google Scholar 

  • Vilardell J, Goday A, Freire MA, Torrent M, Martinez MC, Torné JM, Pagès M (1990) Gene sequence, developmental expression, and protein phosphorylation of RAB-17 in maize. Plant Mol Biol 14:423–432

    Article  PubMed  CAS  Google Scholar 

  • Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:54–59

    Article  Google Scholar 

  • Walkers WF, Tetteroo AA, Alberda M, Hoekstra FA (1999) Changed properties of the cytoplasmic matrix associated with desiccation tolerance of dried carrot somatic embryos. An in situ Fourier transform infrared spectroscopic study. Plant Physiol 120:153–163

    Article  Google Scholar 

  • Welling A, Rinne P, Vihera-Aarnio A, Kontunen-Soppela S, Heino P, Palva ET (2004) Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). J Exp Bot 55:507–516

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski M, Webb R, Balsamo R, Close TJ, Yu XM, Griffith M (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol Plant 105:600–608

    Article  CAS  Google Scholar 

  • Zimmerman J-L (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Timothy Close for supplying the antidehydrin antiserum and peptide salt. Funding for this work was provided by the BID-PICT 0144 loan to S.M, CNPq/CBAB (403015/2008-1; 480142/2010-6) and FAPERJ (E-26/101.513/2010) to VS. HPB and MPL-F would also like to thank the Universidad de Buenos Aires and TB, the Universidade Estadual do Norte Fluminense Darcy Ribeiro, for their respective fellowships.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Maldonado.

Additional information

Communicated by B. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burrieza, H.P., López-Fernández, M.P., Chiquieri, T.B. et al. Accumulation pattern of dehydrins during sugarcane (var. SP80.3280) somatic embryogenesis. Plant Cell Rep 31, 2139–2149 (2012). https://doi.org/10.1007/s00299-012-1323-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1323-z

Keywords

Navigation