Skip to main content
Log in

Disrupted actin dynamics trigger an increment in the reactive oxygen species levels in the Arabidopsis root under salt stress

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Changes in actin dynamics represent the primary response of the plant cell to extracellular signaling. Recent studies have now revealed that actin remodeling is involved in abiotic stress tolerance in plants. In our current study, the relationship between the changes in actin dynamics and the reactive oxygen species (ROS) level at the initial stages of salt stress was investigated in the elongation zone of the Arabidopsis root tip. We found that a 200 mM NaCl treatment disrupted the dynamics of the actin filaments within 10 min and increased the ROS levels in the elongation zone cells of the Arabidopsis root tip. We further found that the NADPH oxidase activity inhibitor, diphenyleneiodonium, treatment blocked this ROS increase under salt stress conditions. The roles of actin dynamics and the NADPH oxidases in ROS generation were further analyzed using the actin-specific agents, latrunculin B (Lat-B) and jasplakinolide (Jasp), and mutants of Arabidopsis NADPH oxidase AtrbohC. Lat-B and Jasp promote actin depolymerization and polymerization, respectively, and both were found to enhance the ROS levels following NaCl treatment. However, this response was abolished in the atrbohC mutants. Our present results thus demonstrate that actin dynamics are involved in regulating the ROS level in Arabidopsis root under salt stress conditions.

Key message Salt stress disrupts the dynamics of the actin filaments in Arabidopsis in the short term which are involved in regulating the ROS levels that arise under salt stress conditions via the actions of the AtrbohC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bubb MR, Spector I, Beyer BB, Fosen KM (2000) Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J Biol Chem 275:5163–5170

    Article  PubMed  CAS  Google Scholar 

  • Chhabra ES, Higgs HN (2007) The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol 9:1110–1121

    Article  PubMed  CAS  Google Scholar 

  • D’Angeli S, Altamura M (2007) Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization. Planta 225:1147–1163

    Article  PubMed  Google Scholar 

  • Era A, Tominaga M, Ebine K, Awai C, Saito C, Ishizaki K, Yamato KT, Kohchi T, Nakano A, Ueda T (2009) Application of Lifeact reveals F-actin dynamics in Arabidopsis thaliana and the liverwort, Marchantia polymorpha. Plant Cell Physiol 50:1041–1048

    Article  PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Franklin-Tong VE, Gourlay CW (2008) A role for actin in regulating apoptosis/programmed cell death, evidence spanning yeast, plants and animals. Biochem J 413:389–404

    Article  PubMed  CAS  Google Scholar 

  • Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR (2004) A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol 164:803–809

    Article  PubMed  CAS  Google Scholar 

  • Hussey PJ, Ketelaar T, Deeks MJ (2006) Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol 57:109–125

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Zhang J (2003) Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defense in leaves of maize seedlings. Plant, Cell Environ 26:929–939

    Article  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  PubMed  CAS  Google Scholar 

  • Leshem Y, Serie L, Levine A (2007) Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J 51:185–197

    Article  PubMed  CAS  Google Scholar 

  • MacRobbie EA, Kurup S (2007) Signalling mechanisms in the regulation of vacuolar ion release in guard cells. New Phytol 175:630–640

    Article  PubMed  CAS  Google Scholar 

  • Malerba M, Crosti P, Cerana R (2010) Effect of heat stress on actin cytoskeleton and endoplasmic reticulum of tobacco BY-2 cultured cells and its inhibition by Co2+. Protoplasma 239:23–30

    Article  PubMed  CAS  Google Scholar 

  • Mazars C, Thion L, Thuleau P, Graziana A, Knight MR, Moreau M, Ranjeva R (1997) Organization of cytoskeleton controls changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts. Cell Calcium 22:413–420

    Article  PubMed  CAS  Google Scholar 

  • Mazel A, Leshem Y, Tiwari BS, Levine A (2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol 134:118–128

    Article  PubMed  CAS  Google Scholar 

  • Michelot A, Berro J, Guerin C, Boujemaa-Paterski R, Staiger CJ, Martiel JL, Blanchoin L (2007) Actin-filament stochastic dynamics mediated by ADF/cofilin. Curr Biol 17:825–833

    Article  PubMed  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S (2009) Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21:2341–2356

    Article  PubMed  CAS  Google Scholar 

  • Morley SC, Sun GP, Bierer BE (2003) Inhibition of actin polymerization enhances commitment to and execution of apoptosis induced by withdrawal of trophic support. J Cell Biochem 88:1066–1076

    Article  CAS  Google Scholar 

  • Müller J, Menzel D, Samaj J (2007) Cell-type-specific disruption and recovery of the cytoskeleton in Arabidopsis thaliana epidermal root cells upon heat shock stress. Protoplasma 230:231–242

    Article  PubMed  Google Scholar 

  • Müller K, Carstens AC, Linkies A, Torres MA, Leubner-Metzger G (2009) The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after ripening. New Phytol 184:885–897

    Article  PubMed  Google Scholar 

  • Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Hishinuma H, Senzaki E, Yamagoe S, Nagata K, Nara M, Suzuki K, Tanokura M, Kuchitsu K (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283:8885–8892

    Article  PubMed  CAS  Google Scholar 

  • Orvar BL, Sangwan V, Omann F, Dhindsa RS (2000) Early steps in cold sensing by plant cells, the role of actin cytoskeleton and membrane fluidity. Plant J 23:785–794

    Article  PubMed  CAS  Google Scholar 

  • Ou GS, Chen ZL, Yuan M (2002) Jasplakinolide reversibly disrupts actin filaments in suspension-cultured tobacco BY-2 cells. Protoplasma 219:168–175

    Article  PubMed  CAS  Google Scholar 

  • Pokorna J, Schwarzerova K, Zelenkova S, Petrasek J, Janotova I, Capkova V, Opatrny Z (2004) Sites of actin filament initiation and reorganization in cold treated tobacco cells. Plant Cell Environ 27:641–653

    Article  CAS  Google Scholar 

  • Posey SC, Bierer BE (1999) Actin stabilization by jasplakinolide enhances apoptosis induced by cytokine deprivation. J Biol Chem 274:4259–4265

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen I, Pedersen LH, Byg L, Suzuki K, Sumimoto H, Vilhardt F (2010) Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia. BMC Immunol 11:44

    Article  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  PubMed  CAS  Google Scholar 

  • Sheppard FR, Kelher MR, Moore EE, McLaughlin NJ, Banerjee A, Silliman CC (2005) Structural organization of the neutrophil NADPH oxidase, phosphorylation and translocation during priming and activation. J Leukocyte Biol 78:1025–1042

    Article  PubMed  CAS  Google Scholar 

  • Smertenko AP, Deeks MJ, Hussey PJ (2010) Strategies of actin reorganisation in plant cells. J Cell Sci 123:3019–3028

    Article  PubMed  CAS  Google Scholar 

  • Staiger CJ, Sheahan MB, Khurana P, Wang X, McCurdy DW, Blanchoin L (2009) Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array. J Cell Biol 184:269–280

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    Article  PubMed  CAS  Google Scholar 

  • Tamura M, Kai T, Tsunawaki S, Lambeth JD, Kameda K (2000) Direct interaction of actin with p47phox of neutrophil NADPH oxidase. Biochem Bioph Res Co 276:1186–1190

    Article  CAS  Google Scholar 

  • Thomas SG, Huang S, Li S, Staiger CJ, Franklin-Tong VE (2006) Actin depolymerization is sufficient to induce programmed cell death in self-incompatible pollen. J Cell Biol 174:221–229

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JD (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase gp91phox. Plant J 14:365–370

    Article  PubMed  CAS  Google Scholar 

  • Usatyuk PV, Romer LH, He D, Parinandi NL, Kleinberg ME, Zhan S, Jacobson JR, Dudek SM, Pendyala S, Garcia JG, Natarajan V (2007) Regulation of hyperoxia-induced NADPH oxidase activation in human lung endothelial cells by the actin cytoskeleton and cortactin. J Biol Chem 282:23284–23295

    Article  PubMed  CAS  Google Scholar 

  • Verbelen JP, De Cnodder T, Le J, Vissenberg K, Baluska F (2006) The root apex of Arabidopsis thaliana consists of four distinct zones of growth activities, meristematic zone, transition zone, fast elongation zone and growth terminating zone. Plant Signal Behav 1:296–304

    Article  PubMed  Google Scholar 

  • Vidali L, Rounds CM, Hepler PK, Bezanilla M (2009) Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS ONE 4:e5744

    Article  PubMed  Google Scholar 

  • Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    Article  PubMed  CAS  Google Scholar 

  • Wang YF, Fan LM, Zhang WZ, Zhang W, Wu WH (2004) Ca2+-permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments. Plant Physiol 136:3892–3904

    Article  PubMed  CAS  Google Scholar 

  • Wang YS, Yoo CM, Blancaflor EB (2007) Improved imaging of actin filaments in transgenic Arabidopsis plants expressing a green fluorescent protein fusion to the C- and N-termini of the fimbrin actin-binding domain 2. New Phytol 177:525–536

    PubMed  Google Scholar 

  • Wang C, Zhang L, Yuan M, Ge Y, Liu Y, Fan J, Ruan Y, Cui Z, Tong S, Zhang S (2009) The microfilament cytoskeleton plays a vital role in salt and osmotic stress tolerance in Arabidopsis. Plant Biol 12:70–98

    Article  CAS  Google Scholar 

  • Wang XL, Gao XQ, Wang XC (2011) Stochastic dynamics of actin filaments in guard cells regulating chloroplast localization during stomatal movement. Plant Cell Environ 34:1248–1257

    Article  PubMed  CAS  Google Scholar 

  • Wasteneys GO, Yang Z (2004) New views on the plant cytoskeleton. Plant Physiol 136:3884–3891

    Article  PubMed  CAS  Google Scholar 

  • Wientjes FB, Reeves EP, Soskic V, Furthmayr H, Segal AW (2001) The NADPH oxidase components p47phox and p40phox bind to moesin through their PX domain. Biochem Biophy Res Co 289:382–388

    Article  CAS  Google Scholar 

  • Wilkins KA, Bancroft J, Bosch M, Ings J, Smirnoff N, Franklin-Tong VE (2011) Reactive oxygen species and nitric oxide mediate actin reorganization and programmed cell death in the self-incompatibility response of Papaver. Plant Physiol 156:404–416

    Article  PubMed  CAS  Google Scholar 

  • Xie YJ, Xu S, Han B, Wu MZ, Yuan XX, Han Y, Gu Q, Xu DK, Yang Q, Shen WB (2011) Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. Plant J 66:280–292

    Article  PubMed  CAS  Google Scholar 

  • Yao H, Xu Q, Yuan M (2008) Actin dynamics mediates the changes of calcium level during the pulvinus movement of Mimosa pudica. Plant Signal Behav 3:954–960

    PubMed  Google Scholar 

  • Zhang W, Fan LM, Wu WH (2007) Osmo-sensitive and stretch activated calcium-permeable channels in Vicia faba guard cells are regulated by actin dynamics. Plant Physiol 143:1140–1151

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Yang Z, Guo G, Guo Y (2010) Microfilament dynamics is required for root growth under alkaline stress in Arabidopsis. J Integr Plant Biol 52:952–958

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Elison B. Blancaflor (Samuel Roberts Noble Foundation, Ardmore, Oklahoma, USA) for providing the transgenic line expressing GFP-ABD2-GFP, and the Arabidopsis Biological Resource Center (Ohio State University, www.arabidopsis.org/abrc) for kindly providing the Arabidopsis mutant seeds. This study is funded by the National Natural Science Foundation of China (31170293; 31000652), and the Opening Project of the State Key Laboratory of Plant Physiology and Biochemistry (SKLPPBKF09005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Qi Gao.

Additional information

Communicated by K. Chong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4565 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S.G., Zhu, D.Z., Chen, G.H. et al. Disrupted actin dynamics trigger an increment in the reactive oxygen species levels in the Arabidopsis root under salt stress. Plant Cell Rep 31, 1219–1226 (2012). https://doi.org/10.1007/s00299-012-1242-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1242-z

Keywords

Navigation