Skip to main content
Log in

Transgenic rice plants harboring the grain hardness-locus region of Aegilops tauschii

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Grain hardness of wheat is determined by the hardness (Ha)-locus region, which contains three friabilin-related genes: puroindoline-a (Pina), puroindoline-b (Pinb) and GSP-1. In our previous study, we produced the transgenic rice plants harboring the large genomic fragment of the Ha-locus region of Aegilops tauschii containing Pina and GSP-1 genes by Agrobacterium-mediated transformation. To examine the effects of the transgenes in the rice endosperms, we firstly confirmed the homozygosity of the T-DNAs in four independent T2 lines by using fluorescence in situ hybridization (FISH) and DNA gel blot analyses. The transgenes, Pina and GSP-1, were stably expressed in endosperms of the T3 and T4 seeds at RNA and protein levels, indicating that the promoters and other regulatory elements on the wheat Ha-locus region function in rice, and that multigene transformation using a large genomic fragment is a useful strategy. The functional contribution of the transgene-derived friabilins to the rice endosperm structure was considered as an increase of spaces between compound starch granules, resulting in a high proportion of white turbidity seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FISH:

Fluorescence in situ hybridization

GSP-1 :

Grain Softness Protein-1

Ha :

Hardness

Pina :

Puroindoline-a

Pinb :

Puroindoline-b

RT-PCR:

Reverse transcription polymerase chain reaction

SEM:

Scanning electron microscope

References

  • Amoroso MG, Longobardo L, Capparelli R (2004) Real time PCR and flow cytometry to investigate wheat kernel hardness: role of puroindoline genes and proteins. Biotechnol Lett 26:1731–1737

    Article  PubMed  CAS  Google Scholar 

  • Bhave M, Morris CF (2008) Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol Biol 66:205–219

    Article  PubMed  CAS  Google Scholar 

  • Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier MF, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17:1033–1045

    Article  PubMed  CAS  Google Scholar 

  • Chen F, He Z, Xia XC, Xia LQ, Zhang XY, Lillemo M, Morris CF (2006) Molecular and biochemical characterisation of puroindoline a and b alleles in Chinese landraces and historical cultivars. Theor Appl Genet 112:400–409

    Article  PubMed  CAS  Google Scholar 

  • Clarke B, Rahman S (2005) A microarray analysis of wheat grain hardness. Theor Appl Genet 110:1259–1267

    Article  PubMed  CAS  Google Scholar 

  • Digeon JF, Guiderdoni E, Alary R, Michaux-Ferrière N, Joudrier P, Gautier MF (1999) Cloning of a wheat puroindoline gene promoter by IPCR and analysis of promoter regions required for tissue-specific expression in transgenic rice seeds. Plant Mol Biol 39:1101–1112

    Article  PubMed  CAS  Google Scholar 

  • Feiz L, Wanjugi HW, Melnyk CW, Altosaar I, Martin JM, Giroux MJ (2009) Puroindolines co-localize to the starch granule surface and increase seed bound polar lipid content. J Cereal Sci 50:91–98

    Article  CAS  Google Scholar 

  • Giroux MJ, Morris CF (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline-a and -b. Proc Natl Acad Sci USA 95:6262–6266

    Article  PubMed  CAS  Google Scholar 

  • Giroux MJ, Talbert L, Habernicht DK, Lanning S, Hemphill A, Martin JM (2000) Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci 30:370–374

    Article  Google Scholar 

  • Ikeda TM, Ohnishi N, Nagamine T, Oda S, Hisatomi T, Yano H (2005) Identification of new puroindoline genotypes and their relationship to flour texture among wheat cultivars. J Cereal Sci 41:1–6

    Article  CAS  Google Scholar 

  • Imazawa T, Suzuki G, Nakano A, Yamamoto M, Mukai Y (2009) Visualization of multiple T-DNA loci by FISH on extended DNA fibers. Plant Biotech 26:421–425

    Article  CAS  Google Scholar 

  • Jolly CJ, Rahman S, Kortt AA, Higgins TJV (1993) Characterisation of the wheat Mr 15,000 ‘grain-softness protein’ and analysis of the relationship between its accumulation and the whole seed and grain softness. Theor Appl Genet 86:589–597

    Article  CAS  Google Scholar 

  • Krishnamurthy K, Giroux M (2001) Expression of wheat puroindoline genes in transgenic rice confers grain softness. Nat Biotechnol 19:162–166

    Article  PubMed  CAS  Google Scholar 

  • Morris CF, Bhave M (2008) Reconciliation of D-genome puroindoline allele designations with current DNA sequence data. J Cereal Sci 48:277–287

    Article  CAS  Google Scholar 

  • Mukai Y, Endo TR, Gill BS (1990) Physical mapping of the 5S rDNA multigene family in common wheat. J Hered 81:290–295

    CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nakano A, Suzuki G, Yamamoto M, Turnbull K, Rahman S, Mukai Y (2005) Rearrangements of large-insert T-DNAs in transgenic rice. Mol Genet Genomics 273:123–129

    Article  PubMed  CAS  Google Scholar 

  • Naqvi S, Farré G, Sanahuja G, Capell T, Zhu C, Christou P (2010) When more is better: multigene engineering in plants. Trends Plant Sci 15:48–56

    Article  PubMed  CAS  Google Scholar 

  • Suzuki G, Ura A, Saito N, Do G, So B, Yamamoto M, Mukai Y (2001) BAC FISH analysis in Allium cepa. Genes Genetic Syst 76:251–255

    Article  CAS  Google Scholar 

  • Turnbull K-M, Marion D, Gaborit T, Appels R, Rahman S (2003a) Early expression of grain hardness in the developing wheat endosperm. Planta 216:699–706

    PubMed  CAS  Google Scholar 

  • Turnbull K-M, Turner M, Mukai Y, Yamamoto M, Morell MK, Appels R, Rahman S (2003b) The organization of genes tightly linked to the Ha locus in Aegilops tauschii, the D-genome donor to wheat. Genome 46:330–338

    Article  PubMed  CAS  Google Scholar 

  • Wada N, Kajiyama S, Cartagena JA, Lin L, Akiyama Y, Otani M, Suzuki G, Mukai Y, Aoki N, Fukui K (2010) The effects of puroindoline b on the ultrastructure of endosperm cells and physicochemical properties of transgenic rice plant. J Cereal Sci 51:182–188

    Article  CAS  Google Scholar 

  • Wiley PR, Tosi P, Evrard A, Lovegrove A, Jones HD, Shewry PR (2007) Promoter analysis and immunolocalisation show that puroindoline genes are exclusively expressed in starchy endosperm cells of wheat grain. Plant Mol Biol 64:125–136

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Martin JM, Beecher B, Morris CF, Curtis Hannah L, Giroux MJ (2009) Seed-specific expression of the wheat puroindoline genes improves maize wet milling yields. Plant Biotechnol J 7:733–743

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly obliged to Drs. Yasunori Nakamura and Akiko Kubo of the Akita Prefectural University, Dr. Tatsuya M. Ikeda of the National Agricultural Research Center for Western Region, and Dr. Noriaki Aoki of the National Institute of Crop Science for their useful technical and scientific advice. This work was supported in part by the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT) and the Japan Society for the Promotion of Science (JSPS) grants, KAKENHI (18075003 and 20780240 to G.S., 22580004 and 19380194 to Y.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Go Suzuki.

Additional information

Communicated by K. Toriyama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2011_1134_MOESM1_ESM.doc

Online Resource 1: Separated total DNAs (HindIII digested) stained with ethidium bromide before Southern blotting (Fig. 2a) as the DNA amount control (DOC 189 kb)

299_2011_1134_MOESM2_ESM.doc

Online Resource 2 The CBB-stained SDS-PAGE gels for the protein amount control of Western blot analysis (Fig. 4). (DOC 746 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, G., Wada, H., Goto, H. et al. Transgenic rice plants harboring the grain hardness-locus region of Aegilops tauschii . Plant Cell Rep 30, 2293–2301 (2011). https://doi.org/10.1007/s00299-011-1134-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1134-7

Keywords

Navigation