Skip to main content
Log in

Relationship between Rh-RTH1 and ethylene receptor gene expression in response to ethylene in cut rose

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A cDNA clone encoding a putative RTE1-like protein (Rh-RTH1) was obtained from total RNA isolated from senescing rose (Rosa hybrida cv. Tineke) petals using RT-PCR and RACE techniques. The cDNA (1,061 bp) contained an open reading frame of 684 bp corresponding to 227 amino acids. The amino acid sequence had 60.0, 49.6, 61.2, 42.5 and 39.8% identity with that of Arabidopsis RTH, RTE1, tomato GRL2, GRL1 and GR, respectively. Northern hybridization indicated that Rh-RTH1 expression is enhanced by endogenous and exogenous ethylene and inhibited by 1-MCP in petals and gynoecia. Rh-RTH1 expression partly correlated with sites of the ethylene receptor gene Rh-ETR1 and Rh-ETR3 expression, such as the petals, gynoecia, roots, and buds. The induction of Rh-RTH1 and Rh-ETR3 expression was substantially suppressed by 1-MCP treatment, while Rh-ETR1 expression was not reduced by 1-MCP treatment. Following treatment of flowers with sucrose, the level of Rh-RTH1 and Rh-ETR3 mRNA was only slightly decreased in petals and gynoecia. Upon wounding treatment, Rh-RTH1, Rh-ETR1 and Rh-ETR3 showed a quick increase in mRNA accumulation which was positively correlated with the increase in ethylene production. The expression of Rh-RTH1 showed partial correlation with that of Rh-ETR1 and Rh-ETR3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CTR:

Constitutive triple response

EIN:

Ethylene insensitive

ETR:

Ethylene resistant

ERS:

Ethylene response sensor

PCR:

Polymerase chain reaction

RACE:

Rapid-amplification of cDNA ends

RT:

Reverse transcription

RTH:

RTE1-HOMOLOG

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2nd edn. Academic Press, New York

    Google Scholar 

  • Barry CS, Giovannoni JJ (2006) Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc Natl Acad Sci USA 103:7923–7928

    Article  CAS  PubMed  Google Scholar 

  • Bui AQ, O’Neill SD (1998) Three 1-aminocyclopropane-1-carboxylate synthase genes regulated by primary and secondary pollination signals in orchid flowers. Plant Physiol 116:419–428

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    Article  CAS  PubMed  Google Scholar 

  • Chen YF, Etheridge N, Schaller GE (2005) Ethylene signal transduction. Ann Bot 95:901–915

    Article  CAS  PubMed  Google Scholar 

  • Clark DG, Richards C, Hilioti Z, Lind-Iversen S, Brown K (1997) Effect of pollination on accumulation of ACC synthase and ACC oxidase transcripts, ethylene production and flower petal abscission in geranium (Pelargonium hortorum L.H. Bailey). Plant Mol Biol 34:855–865

    Article  CAS  PubMed  Google Scholar 

  • Dolan L (2001) The role of ethylene in root hair growth in Arabidopsis. J Plant Nutr Soil Sci 164:141–145

    Article  CAS  Google Scholar 

  • Dong CH, Rivarola M, Resnick JS, Maggin BD, Chang C (2008) Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signalling. Plant J 53:275–286

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49

    Article  CAS  PubMed  Google Scholar 

  • Hall AE, Bleecker AB (2003) Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell 15:2032–2041

    Article  CAS  PubMed  Google Scholar 

  • Hoeberichts FA, van Doorn WG, Vorst O, Hall RD, van Wordragen MF (2007) Sucrose prevents up-regulation of senescence-associated genes in carnation petals. J Exp Bot 58:2873–2885

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712–1714

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10:1321–1332

    Article  CAS  PubMed  Google Scholar 

  • Jones ML, Woodson WR (1997) Pollination-induced ethylene in carnation: role of stylar ethylene in corolla senescence. Plant Physiol 115:205–212

    CAS  PubMed  Google Scholar 

  • Kieber JJ (1997) The ethylene signal transduction pathway in Arabidopsis. J Exp Bot 48:211–218

    Article  CAS  PubMed  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin in Plant Biol 7:235–246

    Google Scholar 

  • Kumar N, Srivastava GC, Dixit K (2008) Effect of ethanol plus sucrose on the vase-life of cut rose Rosa hybrida L. J Hortic Sci Biotechnol 83:749–754

    CAS  Google Scholar 

  • Llop-Tous I, Barry CS, Grierson D (2000) Regulation of ethylene biosynthesis in response to pollination in tomato flowers. Plant Physiol 123:971–978

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Cai L, Lu WJ, Tan H, Gao JP (2005) Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the genes encoding ethylene biosynthesis enzymes. Sci China Ser C 48:434–444

    Article  CAS  Google Scholar 

  • Ma N, Tan H, Liu XH, Xue JQ, Li YH, Gao JP (2006) Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha. J Exp Bot 57:2763–2773

    Article  CAS  PubMed  Google Scholar 

  • Manning K (1985) The ethylene forming enzyme system in carnation flowers. In: Roberts JA, Tucker GA (eds) Ethylene and plant development. Butterworths, Boston, pp 83–92

    Google Scholar 

  • Müller R, Lind-Iversen S, Stummann BM, Serek M (2000a) Expression of genes for ethylene biosynthetic enzymes and an ethylene receptor in senescing flowers of miniature potted roses. J Hortic Sci Biotechnol 75:12–18

    Google Scholar 

  • Müller R, Stummann BM, Serek M (2000b) Characterization of an ethylene receptor family with differential expression in rose (Rosa hybrida L.) flowers. Plant Cell Rep 19:1232–1239

    Article  Google Scholar 

  • O’Neill SD, Nadeau JA, Zhang XS, Bui AQ, Halevy AH (1993) Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell 5:419–432

    Article  PubMed  Google Scholar 

  • Ohto M, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K (2001) Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol 127:252–261

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Martínez O, Pernas M, Carol RJ, Dolan L (2007) Ethylene modulates stem cell division in the Arabidopsis thaliana root. Science 317:507–510

    Article  PubMed  Google Scholar 

  • Qu X, Hall BP, Gao Z, Schaller GE (2007) A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1. BMC Plant Biol 7:3

    Article  PubMed  Google Scholar 

  • Raz V, Koornneef M (2001) Cell division activity during apical hook development. Plant Physiol 125:219–226

    Article  CAS  PubMed  Google Scholar 

  • Reid MS, Evans RY, Dodge LL, Mor Y (1989) Ethylene and silver thiosulphate influence opening of cut rose flowers. J Am Soc Hortic Sci 114:436–440

    CAS  Google Scholar 

  • Resnick JS, Wen CK, Shockey JA, Chang C (2006) REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci USA 103:7917–7922

    Article  CAS  PubMed  Google Scholar 

  • Resnick JS, Rivarola M, Chang C (2008) Involvement of RTE1 in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis. Plant J 56:423–431

    Article  CAS  PubMed  Google Scholar 

  • Rivarola M, McClellan CA, Resnick JS, Chang C (2009) ETR1-specific mutations distinguish ETR1 from other Arabidopsis ethylene receptors as revealed by genetic interaction with RTE1. Plant Physiol 150:547–551

    Article  CAS  PubMed  Google Scholar 

  • Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB (1998) Meyerowitz EM ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 95:5812–5817

    Article  CAS  PubMed  Google Scholar 

  • Tan H, Liu XH, Ma N, Xue JQ, Lu WJ, Bai JH, Gao JP (2006) Ethylene-influenced flower opening and expression of genes encoding ETRs, CTRs, and EIN3s in two cut rose cultivars. Postharvest Biol Technol 40:97–105

    Article  CAS  Google Scholar 

  • Tang X, Woodson WR (1996) Temporal and spatial expression of 1-aminocyclopropane-1-carboxylate oxidase mRNA following pollination of immature and mature petunia flowers. Plant Physiol 112:503–511

    CAS  PubMed  Google Scholar 

  • Verlinden S, Garcia JJ (2004) Sucrose loading decreases ethylene responsiveness in carnation (Dianthus caryophyllus cv. White Sim) petals. Postharvest Biol Technol 31:305–312

    Article  CAS  Google Scholar 

  • Wan CY, Wilkins TA (1994) A modified hot borate method significantly enhances the yield of high quality RNA from cotton (Gossypium hisrstum L.). Anal Biochem 223:7–12

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Fan J, Ranu RS (2004) Cloning and expression of 1-aminocyclopropane-1-carboxylate synthase cDNA from rosa (Rosa × hybrida). Plant Cell Rep 22:422–429

    Article  CAS  PubMed  Google Scholar 

  • Woodson WR, Park KY, Drory A, Larsen PB, Wang H (1992) Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers. Plant Physiol 99:526–532

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Li Y, Tan H, Yang F, Ma N, Gao J (2008) Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening. J Exp Bot 59:2161–2169

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Komatsu Y, Yokoo Y, Furukawa T (1994) Delaying flower opening of cut roses by cis-propenylphosphonic acid. J Jpn Soc Hortic Sci 63:159–166

    Article  CAS  Google Scholar 

  • Zhou X, Liu Q, Xie F, Wen CK (2007) RTE1 is a Golgi-associated and ETR1-dependent negative regulator of ethylene responses. Plant Physiol 145:75–86

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Fok Ying Tung Education Foundation (104031), and National Natural Science Foundation of China (30800758 and 30972410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanxu Liu.

Additional information

Communicated by J. R. Liu.

Y. Yu and J. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Wang, J., Wang, H. et al. Relationship between Rh-RTH1 and ethylene receptor gene expression in response to ethylene in cut rose. Plant Cell Rep 29, 895–904 (2010). https://doi.org/10.1007/s00299-010-0875-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0875-z

Keywords

Navigation