Skip to main content
Log in

Isolation and promoter analysis of anther-specific genes encoding putative arabinogalactan proteins in Malus × domestica

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

In this study, we searched for anther-specific genes involved in male gametophyte development in apple (Malus × domestica Borkh. cv. Fuji) by differential display-PCR. Three full-length cDNAs were isolated, and the corresponding genomic sequences were determined by genome walking. The identified genes showed intronless 228- to 264-bp open reading frames and shared 82–90% nucleotide sequence. Sequence analysis identified that they encoded a putative arabinogalactan protein (AGP) and were designated MdAGP1, MdAGP2, and MdAGP3, respectively. RT (reverse transcriptase)-PCR revealed that the MdAGP genes were selectively expressed in the stamen. Promoter analysis confirmed that the MdAGP3 promoter was capable of directing anther- or pollen-specific expression of the GUS reporter in tobacco and apple. Furthermore, expression of ribosome-inactivating protein under the control of the MdAGP3 promoter induced complete sporophytic male sterility as we had expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AGP:

Arabinogalactan protein

GPI:

Glycosylphosphatidylinositol

ORF:

Open reading frame

RIP:

Ribosome inactivating protein

UTR:

Untranslated region

References

  • Acosta-Garcia G, Vielle-Calzada J (2004) A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis. Plant Cell 16:2614–2628

    Article  CAS  PubMed  Google Scholar 

  • Aldwinckle H (1993) Improvement of New York apple varieties and root stocks by genetic engineering. NY Fruit Q Winter:3

    Google Scholar 

  • Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869

    Article  CAS  PubMed  Google Scholar 

  • Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissue reveals the unique characteristics of the pollen transcriptom. Plant Physiol 133:713–725

    Article  CAS  PubMed  Google Scholar 

  • Bendtsen J, Nielsen H, Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Brown SK (1995) Genetic improvement of apple: the roles of plant breeding and biotechnology. NY Fruit Q 3:2–5

    Google Scholar 

  • Carpenter JL, Ploense SE, Snustad DP, Silflow CD (1992) Preferential expression of an α-tubulin gene of Arabidopsis in pollen. Plant Cell 4:557–571

    Article  CAS  PubMed  Google Scholar 

  • Cho H, Kim S, Kim M, Kim B (2001) Production of transgenic male sterile tobacco plants with the cDNA encoding a ribosome inactivating protein in Dianthus sinensis L. Mol Cell 11:326–333

    CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nature Biotechnol 20:581–586

    Article  CAS  Google Scholar 

  • Du H, Simpson R, Clarke A, Bacic A (1996) Molecular characterization of a stigma-specific gene encoding an Arabinogalactan-protein (AGP) from Nicotiana alata. Plant J 9:313–323

    Article  CAS  PubMed  Google Scholar 

  • Eisenhaber F, Eisenhaber B, Kubina W, Maurer-Stroh S, Neuberger G, Schneider G, Widpaner M (2003) Prediction of lipid posttranslational modifications and localization signals from protein sequences: big-Pi NMT and PTS1. Nucleic Acids Res 31:3631–3634

    Article  CAS  PubMed  Google Scholar 

  • Eyal Y, Curie C, McCormick S (1995) Pollen specificity elements reside in 30 bp of the proximal promoters of two pollen-expressed genes. Plant Cell 7:373–384

    Article  CAS  PubMed  Google Scholar 

  • Gerster J, Allard S, Robert L (1996) Molecular characterization of two Brassica napus pollen-expressed genes encoding putative Arabinogalactan proteins. Plant Physiol 110:1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Gómez MD, Beltrán J-P, Canas LA (2004) The pea END1 promoter drives anther-specific gene expression in different plant species. Planta 219:967–981

    Article  PubMed  Google Scholar 

  • Guerrero FD, Crossland L, Smutzer GS, Hamilton DA, Mascarenhas JP (1990) Promoter sequences from a maize pollen-specific gene direct tissue-specific transcription in tobacco. Mol Gen Genet 224:161–168

    Article  CAS  PubMed  Google Scholar 

  • Gupta V, Khurana R, Tyagi AK (2007) Promoters of two anther-specific genes confer organ-specific gene expression in a stage-specific manner in transgenic systems. Plant Cell Rep 26:1919–1931

    Article  CAS  PubMed  Google Scholar 

  • Hamilton DA, Schwarz YH, Mascarenhas JP (1998) A monocot pollen-specific promoter contains separable pollen-specific and quantitative elements. Plant Mol Biol 38:663–669

    Article  CAS  PubMed  Google Scholar 

  • Hanson MR, Benolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16(Suppl):S154–S169

    Article  CAS  PubMed  Google Scholar 

  • Hoekema A, Hirsch P, Hooykaas P, Schilperoort R (1983) A binary vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciences Ti-plasmid. Nature 303:179–181

    Article  CAS  Google Scholar 

  • Hrazdina G (1994) Genetic engineering of “Mclntosh” apple to prevent softening during storage. Nk Fruit Q Winter:9

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • John ME, Petersen MW (1994) Cotton (Gossypium hirsutum L.) pollen-specific polygalacturonase mRNA: tissue and temporal specificity of its promoter in transgenic tobacco. Plant Mol Biol 26:1989–1993

    Article  CAS  PubMed  Google Scholar 

  • Knox P, Linstead PJ, Peart J, Cooper C, Roberts K (1991) Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant J 1:317–326

    Google Scholar 

  • Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2:1201–1224

    Article  CAS  PubMed  Google Scholar 

  • Lalanne E, Honys D, Johnson A, Borner G, Lilley K, Dupree P, Grossniklaus U, Twell D (2004) SETH1 and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis. Plant Cell 16:229–240

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-H, Chung K-H, Kim H-U, Jin Y-M, Kim H-I, Park B-S (2003) Induction of male sterile cabbage using a tapetum-specific promoter from Brassica campestris L. ssp. pekinensis. Plant Cell Rep 22:268–273

    Article  CAS  PubMed  Google Scholar 

  • Mariani C, De Beuckeleer M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347:737–741

    Article  CAS  Google Scholar 

  • Park BS, Kim JS, Kim SH, Park YD (2005) Characterization of pollen-preferential gene, BAN102 < from Chinese cabbage. Plant Cell Rep 24:663–670

    Article  CAS  PubMed  Google Scholar 

  • Qiu X, Wu Y, Du S, Erickson L (1997) A new Arabinogalactan protein-like gene expressed in the pollen of alfalfa. Plant Sci 124:41–47

    Article  CAS  Google Scholar 

  • Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45:577–585

    Article  CAS  PubMed  Google Scholar 

  • Roque E, Gómez MD, Ellul P, Wallbraun M, Madueno F, Beltrán J-P, Canas LA (2007) The PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by early anther ablation. Plant Cell Rep 26:313–325

    Article  CAS  PubMed  Google Scholar 

  • Schultz CJ, Rumsewicz MP, Johnson KL, Jones BJ, Gaspar YM, Bacic A (2002) Using genomic resources to guide research directions. The arabinogalactan protein gene family as a test case. Plant Physiol 129:1448–1463

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Bhalla PL, Xu H, Singh MB (2003) Isolation and characterization of a flowering plant male gametic cell-specific promoter. FEBS Lett 542:47–52

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Kieliszewski MJ, Showalter AM (2004a) Overexpression of tomato LeAGP-1 arabinogalactan-protein promotes lateral branching and hampers reproductive development. Plant J 40:870–881

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Zhao Z, Hare MC, Kieliszewski MJ, Showalter AM (2004b) Tomato LeAGP-1 is a plasma membrane-bound, glycosylphosphatidylinositol-anchored arabinogalactan-protein. Physiol Plant 120:319–327

    Article  CAS  PubMed  Google Scholar 

  • Sung S, Yu G, An G (1999) Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiol 120:969–978

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya T, Toriyama K, Ejiri S, Hinata K (1994) Molecular characterization of rice genes specifically expressed in the anther tapetum. Plant Mol Biol 26:1737–1746

    Article  CAS  PubMed  Google Scholar 

  • Twell D, Yamaguchi J, Wing RA, Ushiba J, McCormick S (1991) Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev 5:496–507

    Article  CAS  PubMed  Google Scholar 

  • van Hengel A, Roberts K (2003) AtAGP30, an arabinogalactan-protein in the cell walls of the primary root, plays a role in root regeneration and seed germination. Plant J 36:256–270

    Article  PubMed  Google Scholar 

  • van Hengel A, Barber C, Roberts K (2004) The expression patterns of arabinogalactan-protein AtAGP30 and GLABRA2 reveal a role for abscisic acid in the early stages of root epidermal patterning. Plant J 39:70–83

    Article  PubMed  Google Scholar 

  • van Tunen AJ, Mur LA, Brouns GS, Rienstra J-D, Koes RE, Mol JNM (1990) Pollen- and anther-specific chi promoters from petunia: tandem promoter regulation of the chiA gene. Plant Cell 2:393–401

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (Code 20070301034011) from BioGreen21 program, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Kee Sung.

Additional information

Communicated by J. R. Liu.

Y.-O. Choi and S.-S. Kim contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 (DOC 237 kb)

Supplementary Table 2 (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, YO., Kim, SS., Lee, S. et al. Isolation and promoter analysis of anther-specific genes encoding putative arabinogalactan proteins in Malus × domestica . Plant Cell Rep 29, 15–24 (2010). https://doi.org/10.1007/s00299-009-0794-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0794-z

Keywords

Navigation