Skip to main content
Log in

Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

An amaranth (Amaranthus hypochondriacus) albumin gene, encoding the 35-kDa AmA1 protein of the seed, with a high content of essential amino acids, was used in the biolistic transformation of bread wheat (Triticum aestivum L.) variety Cadenza. The transformation cassette carried the ama1 gene under the control of a powerful wheat endosperm-specific promoter (1Bx17 HMW-GS). Southern-blot analysis of T1 lines confirmed the integration of the foreign gene, while RT-PCR and Western-blot analyses of the samples confirmed the transcription and translation of the transgene. The effects of the extra albumin protein on the properties of flour, produced from bulked T2 seeds, were calculated using total protein and essential amino acid content analysis, polymeric/monomeric protein and HMW/LMW glutenin subunit ratio measurements. The results indicated that not only can essential amino acid content be increased, but some parameters associated with functional quality may also be improved because of the expression of the AmA1 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

RT-PCR:

Reverse transcription polymerase chain reaction

HMW-GS:

High-molecular-weight glutenin subunit

LMW-GS:

Low-molecular-weight glutenin subunit

DPA:

Day post-anthesis

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

BCIP:

5-Bromo-4-chloro-3-indolyl phosphate

NBT:

Nitro blue tetrazolium chloride

DTT:

1, 4-Dithiotreitol

RP-HPLC:

Reverse phase high-performance liquid chromatography

SE-HPLC:

Size exclusion high-performance liquid chromatography

UPP:

Unextractable polymeric protein

HRP:

Horseradish peroxidase

PBST:

Phosphate buffered saline

OD:

Optical density

GUS:

β-Glucuronidase

CTAB:

Cetyl trimethylammonium bromide

PVDF:

Polyvinylidene fluoride

LSD:

Least significant difference

GBSS:

Granule-bound starch synthase

References

  • Adebowale YA, Adeyemi IA, Oshodi AA, Niranjan K (2007) Isolation, fractionation and characterization of proteins from Mucuna bean. Food Chem 104:287–299

    Article  CAS  Google Scholar 

  • Altpeter F, Vasil V, Srivastava V, Vasil IK (1996) Integration and expression of the HMW glutenin subunit 1Ax1 gene into wheat. Nat Biotechnol 14:1155–1159

    Article  PubMed  CAS  Google Scholar 

  • Alvarez ML, Guelman S, Halford NG, Lustig S, Reggiardo MI, Ryabushkina N, Shewry PR, Stein J, Vallejos RH (2000) Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100:319–327

    Article  CAS  Google Scholar 

  • Ayo JA (2001) The effect of amaranth grain flour on the quality of bread. Int J Food Prop 4(2):341–351

    Article  Google Scholar 

  • Barro F, Rooke L, Bekes F, Gras P, Tatham AS, Fido RJ, Lazzeri P, Shewry PR, Barcelo P (1997) Transformation of wheat with HMW subunit genes results in improved functional properties. Nat Biotechnol 15:1295–1299

    Article  PubMed  CAS  Google Scholar 

  • Batey IL, Gupta RB, MacRitchie F (1991) Use of SE-HPLC in the study of wheat flour proteins: An improved chromatographic procedure. Cereal Chem 68:207–209

    CAS  Google Scholar 

  • Blechl AE, Anderson OD (1996) Expression of a novel HMW glutenin subunit gene in transgenic wheat. Nat Biotechnol 14:875–897

    Article  PubMed  CAS  Google Scholar 

  • Bregitzer P, Blechl AE, Fiedler D, Lin J, Sebesta P, De Soto JF, Chicaiza O, Dubcovsky J (2006) Changes in HMW glutenin subunit composition can be genetically engineered without affecting wheat agronomic performance. Crop Sci 46:1553–1563

    Article  CAS  Google Scholar 

  • Chakraborty S, Chakraborty N, Datta A (2000) Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc Natl Acad Sci USA 97:3724–3729

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  PubMed  CAS  Google Scholar 

  • Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  CAS  Google Scholar 

  • Dubetz S, Gardiner EE, Flynn D, de la Roche AI (1979) Effect of nitrogen fertilizer on nitrogen fractions and amino acid composition of spring wheat. Can J Plant Sci 59:299–305

    Article  CAS  Google Scholar 

  • FAO/WHO (1991) Protein quality evolution: report of a joint FAO/ WHO expert consultation. In: FAO food and nutrition paper. Food and Agriculture Organization of the United Nations, Rome

  • Gibbon BC, Larkins BA (2005) Molecular genetic approaches to developing quality protein maize. Trends Genet 21:227–233

    Article  PubMed  CAS  Google Scholar 

  • Gupta RB, MacRitchie F (1994) Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1, of common wheats. II. Biochemical basis of the allelic effects on dough properties. J Cereal Sci 19:19–29

    Article  CAS  Google Scholar 

  • Gupta RB, Popineau Y, Lefebvre J, Cornec M, Lawrence GJ, MacRitchie F (1995) Biochemical basis of flour properties in bread wheats. 2. Changes in polymeric protein-formation and dough/gluten properties associated with the loss of low or high Mr glutenin subunits. J Cereal Sci 21:103–116

    Article  CAS  Google Scholar 

  • Gupta RB, Masci S, Lafiandra D, Bariana HS, MacRitchie F (1996) Accumulation of protein subunits and their polymers in developing grains of hexaploid wheats. J Exp Bot 47:1377–1385

    Article  CAS  Google Scholar 

  • Hagan ND, Upadhyaya N, Tabe LM, Higgins TJV (2003) The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. Plant J 34:1–11

    Article  PubMed  CAS  Google Scholar 

  • He GY, Lazzeri PA, Cannell ME (2001) Fertile transgenic plants obtained from tritordeum inflorescences by tissue electroporation. Plant Cell Rep 20:67–72

    Article  CAS  Google Scholar 

  • Jensen SA, Martens H (1983) The botanical constituents of wheat and wheat milling fractions. II. Quantification by amino acids. Cereal Chem 60:172–177

    CAS  Google Scholar 

  • Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41:137–147

    Article  CAS  Google Scholar 

  • Kang TJ, Loc NH, Jang MO, Jang YS, Kim YS, Seo JE, Yang MS (2003) Expression of the B subunit of E. coli heat-labile enterotoxin in the chloroplasts of plants and its characterization. Transgenic Res 12:683–691

    Article  PubMed  CAS  Google Scholar 

  • Klein TM, Jones TJ (1999) Methods of genetic transformation: the gene gun. In: Vasil IK (ed) Molecular improvement of cereal crops: advances in cellular and molecular biology of plants, vol 5. Kluwer, Dordrecht, pp 21–22

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of bacteriophage. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Marchylo BA, Kruger JE, Hatcher DW (1989) Quantitative RP-HPLC analysis of wheat storage proteins as a potential quality prediction tool. J Cereal Sci 9:113–130

    Article  CAS  Google Scholar 

  • Oszvald M, Jenes B, Tomoskozi S, Bekes F, Tamas L (2007) Expression of the 1Dx5 high-molecular weight glutenin subunit protein in transgenic rice. Cereal Res Commun 35:1543–1549

    Article  CAS  Google Scholar 

  • Oszvald M, Gardonyi M, Tamas C, Takacs I, Jenes B, Tamas L (2008) Development and characterization of a chimaeric tissue-specific promoter in wheat and rice endosperm. In Vitro Cell Dev Biol Plant 44:1–7

    CAS  Google Scholar 

  • Oszvald M, Tamas C, Tomoskozi S, Bekes F, Tamas L (2009) Effects of incorporated amaranth albumins on the functional properties of wheat dough. J Sci Food Agric 89:882–889

    Google Scholar 

  • Paredes-Lopez O, Mora-Escobedo R, Ordorica-Falonir C (1988) Isolation of amaranth proteins. Lebenson Wiss Technol 21:59–61

    CAS  Google Scholar 

  • Pawlowski WP, Somers DA (1996) Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol Biotechnol 6:17–30

    Article  PubMed  CAS  Google Scholar 

  • Prasanna BM, Vasal SK, Kassahun B, Singh NN (2001) Quality protein maize. Curr Sci 81:1308–1319

    CAS  Google Scholar 

  • Raina A, Datta A (1992) Molecular cloning of a gene encoding a seed-specific protein with nutritionally balanced amino acid composition from Amaranthus. Proc Natl Acad Sci USA 89:11774–11778

    Article  PubMed  CAS  Google Scholar 

  • Rakszegi M, Bekes F, Lang L, Tamas L, Shewry PR, Bedo Z (2005) Technological quality of transgenic wheat expressing an increased amount of a HMW glutenin subunit. J Cereal Sci 42:15–23

    Article  CAS  Google Scholar 

  • Rascón-Cruz Q, Sinagawa-García S, Osuna-Castro JA, Bohorova N, Paredes-López O (2004) Accumulation, assembly, and digestibility of amarantin expressed in transgenic tropical maize. Theor Appl Genet 108:335–342

    Article  PubMed  CAS  Google Scholar 

  • Rooke L, Bekes F, Fido R, Barro F, Gras P, Tatham AS, Barcelo P, Lazzeri P, Shewry PR (1999) Overexpression of a gluten protein in transgenic wheat results in greatly increased dough strength. J Cereal Sci 30:115–120

    Article  CAS  Google Scholar 

  • Shewry PR (2007) Improving the protein content and composition of cereal grain. J Cereal Sci 46:239–250

    Article  CAS  Google Scholar 

  • Shewry PR, Powers S, Field JM, Fido RJ, Jones HD, Arnold GM, West J, Lazzeri PA, Barcelo P, Barro F, Tatham AS, Bekes F, Butow B, Darlington H (2006) Comparative field performance over three years and two sites of transgenic wheat lines expressing HMW subunit transgenes. Theor Appl Genet 113:128–136

    Article  PubMed  CAS  Google Scholar 

  • Shoup FK, Pomeranz Y, Deyoe CW (1966) Amino acid composition of wheat varieties and flours varying widely in bread-making potentialities. J Food Sci 31:94–101

    Article  CAS  Google Scholar 

  • Silva-Sanchez CJ, Gonzalez-Castaneda J, De Leon-Rodriguez A, De La Rosa APB (2004) Functional and rheological properties of amaranth albumins extracted from two Mexican varieties. Plant Foods Hum Nutr 59:169–174

    Article  PubMed  CAS  Google Scholar 

  • Sindhu AS, Zheng ZW, Murai N (1997) The pea seed storage protein legumin was synthesized, processed and accumulated stably in transgenic rice endosperm. Plant Sci 130:189–196

    Article  Google Scholar 

  • Sparks CA, Jones HD (2004) Transformation of wheat by biolistics. In: Curtis I (ed) Transgenic crops of the world. Kluwer, Dordrecht, pp 1–16

    Google Scholar 

  • Stacey J, Isaac PG (1994) Isolation of DNA from plants. In: Isaac PG (ed) Methods in molecular biology—protocols for nucleic acid analysis by nonradioactive probes, vol 28. Humana Press Inc, Totowa, pp 9–15

    Chapter  Google Scholar 

  • Stoger E, Parker M, Christou P, Casey R (2001) Pea legumin overexpressed in wheat endosperm assembles into an ordered paracrystalline matrix. Plant Physiol 125:1732–1742

    Article  PubMed  CAS  Google Scholar 

  • Svitashev SK, Pawlowski WP, Makarevitch I, Plank DW, Somers DA (2002) Complex transgene locus structures implicate multiple mechanisms for plant transgene rearrangement. Plant J 32:433–445

    Article  PubMed  CAS  Google Scholar 

  • Tamas C, Szucs P, Rakszegi M, Tamas L, Bedo Z (2004) Effect of combined changes in culture medium and incubation conditions on the regeneration from immature embryos of elite varieties of winter wheat. Plant Cell Tissue Organ Cult 79:39–44

    Article  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets—procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Tung AS (1983) Production of large amounts of antibodies, nonspecific immunoglobulins, and other serum-proteins in ascitic fluids of individual mice and guinea-pigs. Methods Enzymol 93:12–23

    Article  PubMed  CAS  Google Scholar 

  • Uthayakumaran S, Gras PW, Stoddard FL, Bekes F (1999) Effect of varying protein content and glutenin-to-gliadin ratio on the functional properties of wheat dough. Cereal Chem 76:389–395

    Article  CAS  Google Scholar 

  • Uthayakumaran S, Lukow OM, Jordan MC, Cloutier S (2003) Development of genetically modified wheat to assess its dough functional properties. Mol Breed 11:249–258

    Article  CAS  Google Scholar 

  • Vasil IK (2007) Molecular genetic improvement of cereals: transgenic wheat (Triticum aestivum L.). Plant Cell Rep 26:1133–1154

    Article  PubMed  CAS  Google Scholar 

  • Vasil V, Castillo A, Fromm M, Vasil I (1992) Herbicide resistant and fertile transgenic plants obtained by micro-projectile bombardment by regenerable embryogenic callus. Bio/Technology 10:667–674

    Article  CAS  Google Scholar 

  • Zhang X, Liang R, Chen X, Yang F, Zhang L (2003) Transgene inheritance and quality improvement by expressing novel HMW glutenin subunit (HMW-GS) genes in winter wheat. Chin Sci Bull 48:771–776

    Article  Google Scholar 

  • Zhao ZY, Glassman K, Sewalt V, Wang N, Miller M, Chang S, Thompson T, Catron S, Wu E, Bidney D, Kedebe Y, Jung R (2003) Nutritionally improved transgenic sorghum. In: Vasil IK (ed) Plant biotechnology 2002 and beyond. Kluwer, Dordrecht, pp 413–416

    Google Scholar 

  • Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P (2007) Transgenic strategies for the nutritional enhancement of plant. Trends in Plant Sci 12:548–555

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Hungarian National Scientific Research Fund (OTKA T 034791 and K 67844) and by the Bilateral Intergovernmental Science and Technology Cooperation (KOR 13/99). The authors are grateful to Dr. Ferenc Békés for help with the statistical analyses and for his critical reading of the manuscript and valuable discussions. The contributions of Dr. Tae-Jin Kang and Dr. Péter Szűcs are also appreciated to this work. Thanks are due to Dr. Maria Oszvald for help with the measurement of flour protein content and to Dr. Sándor Tömösközi and Gábor Balázs (BUTE, Budapest) for the HPLC study. The authors wish to acknowledge the excellent technical assistance of Mrs Magdolna P Holtai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Tamás.

Additional information

Communicated by H. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamás, C., Kisgyörgy, B.N., Rakszegi, M. et al. Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Rep 28, 1085–1094 (2009). https://doi.org/10.1007/s00299-009-0716-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0716-0

Keywords

Navigation