Skip to main content
Log in

Accumulation, assembly, and digestibility of amarantin expressed in transgenic tropical maize

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

An amaranth (Amaranthus hypochondriacus) 11S globulin cDNA, encoding one of the most important storage proteins (amarantin) of the seed, with a high content of essential amino acids, was used in the transformation of CIMMYT tropical maize genotype. Constructs contained the amarantin cDNA under the control of a tissue-specific promoter from rice glutelin-1 (osGT1) or a constitutive (CaMV 35S) promoter with and without the first maize alcohol dehydrogenase intron (AdH). Southern-blot analysis confirmed the integration of the amarantin cDNA, and copy number ranged from one to more than ten copies per maize genome. Western-blot and ultracentrifugation analyses of transgenic maize indicate that the expressed recombinant amarantin precursors were processed into the mature form, and accumulated stably in maize endosperm. Total protein and some essential amino acids of the best expressing maize augmented 32% and 8–44%, respectively, compared to non-transformed samples. The soluble expressed proteins were susceptible to digestion by simulated gastric and intestinal fluids, and it is suggested that they show no allergenic activity. These findings demonstrate the feasibility of using genetic engineering to improve the amino acid composition of grain crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–E.
Fig. 2A, B.
Fig. 3A–C.
Fig. 4A–C.
Fig. 5A–C.
Fig. 6A, B.

Similar content being viewed by others

References

  • Astwood J, Leach J, Fuchs R (1996) Stability of food allergens to digestion in vitro. Nat Biotechnol 14:1269–1273

    CAS  PubMed  Google Scholar 

  • Barba de la Rosa A, Herrera-Estrella A, Utsumi S, Paredes-López O (1996) Molecular characterization, cloning and structural analysis of a cDNA encoding an amaranth globulin. J Plant Physiol 149:527–532

    Google Scholar 

  • Bellucci M, Alpini A, Arcioni S (2002) Zein-accumulation in forage species (Lotus corniculatus and Medicago sativa) and co-expression of the γ-zein:KDEL and β-zein:KDEL polypeptides in tobacco leaf. Plant Cell Rep 20:848–856

    CAS  Google Scholar 

  • Bohorova N, Zhang W, Julstrum P, McLean S, Brito L, Diaz L, Ramos ME, Estañol P, Pacheco M, Salgado M, Hoisington D (1999) Production of transgenic tropical maize with cryIAb and cryIAc genes via microprojectile bombardment of immature embryos. Theor Appl Genet 99:437–444

    Article  CAS  Google Scholar 

  • Bohorova N, Frutos R, Royer M, Estañol P, Pacheco M, Rascon Q, Hoisington D (2001) Novel synthetic Bacillus thuringiensis cry1B gene and cry1B-cry1Ab translational fusion confer resistance to southwestern corn borer, sugarcane borer and fall armyworm in transgenic tropical maize. Theor Appl Genet 103:817–826

    Article  CAS  Google Scholar 

  • Chakraborty S, Chakraborty N, Datta A (2000) Increasing nutritive value of transgenic potato by expressing nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc Natl Acad Sci 97:3724–3729

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Paredes-López O (1997) Isolation and characterization of the 11S globulin from amaranth seed. J Food Biochem 21:53–65

    CAS  Google Scholar 

  • Christensen A, Quail P (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    CAS  PubMed  Google Scholar 

  • Cozzolino D, Fassio A, Gimenez A (2000) The use of near-infrared reflectance spectroscopy (NIR) to predict the composition of whole maize plants. J Sci Food Agric 81:142–146

    Article  Google Scholar 

  • FAO/WHO (1991) Food and Agriculture Organization of the United Nations. In: FAO food and nutrition paper. Rome

  • Fido R, Tatham AS, Shewry PR (1995) Western-blotting analysis. In: Jones H (ed) Methods in molecular biology-plant gene transfer and expression protocols. Humana Press, Totowa, N.J., pp 423–437

  • Fontaine J, Schirmer B, Horr J (2002) Near-infrared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of essential amino acid contents. J Agric Food Chem 50:3902–3911

    Article  CAS  PubMed  Google Scholar 

  • Guzmán-Maldonado SH, Paredes-López O (1998) Biochemical and Processing Aspects. In: Mazza G (ed) Functional foods. Technomic Publishing, Lancaster, Penn., pp 293–328

  • Habben JE, Larkins B (1995) Genetic modification of seed proteins. Curr Opin Biotechnol 6:171–176

    Article  CAS  PubMed  Google Scholar 

  • Hasimoto W, Momma K, Katsube T, Ohkawa I, Kito M, Utsumi K, Murata K (1999) Safety assessment of genetically engineered potatoes with designed soybean glycinin: compositional analyses of the potato tuber and digestibility of the new expressed protein in transgenic potatoes. J Sci Food Agric 79:1607–1612

    Article  Google Scholar 

  • Imura T, Tanaka M, Watanabe T, Kudo S, Uchida T, Kanazawa T (1996) Effect of soy protein on serum lipid in adult volunteers. Theor Res 17:573–578

    Google Scholar 

  • Katsube T, Kurisaka N, Ogawa M, Maruyama N, Ohtsuka R, Utsumi S, Takaiwa F (1999) Accumulation of soybean glycinin and its assembly with the glutelins in rice. Plant Physiol 120:1063–1073

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lai J, Messing J (2002) Increasing maize seed methionine by mRNA stability. Plant J 30:395–402

    Article  CAS  PubMed  Google Scholar 

  • Molving L, Tabe L, Eggum B, Moore A, Craig S, Spencer D, Higgins T (1997) Enhanced methionine levels and increased value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci 94:8393–8398

    CAS  PubMed  Google Scholar 

  • Momma K, Hashimoto W, Ozawa S, Kawai S, Katsube T, Takaiwa F, Kito M, Utsumi S, Murata K (1999) Quality and safety evaluation of genetically engineered rice with soybean glycinin: analyses of the grain composition and digestibility of glycinin in transgenic rice. Biosci Biotechnol Biochem 63:314–318

    CAS  PubMed  Google Scholar 

  • Nordlee JA, Taylor SL, Towsend JA, Thomas LA, Bush RK (1996) Identification of a Brazil-nut allergen in transgenic soybeans. N Eng J Med 334:688–692

    Article  CAS  Google Scholar 

  • Oliveira LO, Nam YW, Jung R, Nielsen NC (2002) Processing and assembly in vitro of engineered soybean beta-conglicin subunits with the asparagine-glycine proteolytic cleavage site of 11S globulins. Mol Cells 28:43–51

    Google Scholar 

  • Osuna-Castro JA, Rascón-Cruz Q, Napier J, Fido RJ, Shewry PR, Paredes-López O (2000) Overexpression, purification, and in vitro refolding of the 11S globulin from Amaranth seed in Escherichia coli. J Agric Food Chem 48:5249–5255

    Article  CAS  PubMed  Google Scholar 

  • Roesler K, Rao A (2001) Rapid gastric fluid digestion and biochemical characterization of engineered proteins enriched in essential amino acids. J Agric Food Chem 49:3443–3415

    Article  CAS  PubMed  Google Scholar 

  • Russell D, Sachs M (1991) The maize cytosolic glyceraldehyde-3-phosphate dehydrogenase gene family: organ-specific expression and genetic analysis. Mol Gen Genet 229:219–228

    CAS  PubMed  Google Scholar 

  • Segura-Nieto M, Barba de la Rosa A, Paredes-López O (1994) Biochemistry of amaranth proteins. In: Paredes-López O (ed) Amaranth biology, chemistry and technology. CRC Press, Boca Raton, pp 76–95

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties, and role in grain utilization. J Exp Bot 53:947–958

    Article  CAS  PubMed  Google Scholar 

  • Shirai N, Momma K, Ozawa S, Hashimoto W, Kito M, Utsumi S, Murata K (1998) Safety assessment of genetically engineered food: detection and monitoring of glyphosate-tolerant soybeans. Biosci Biotechnol Biochem 62:1461–1464

    CAS  PubMed  Google Scholar 

  • Shure M, Weesler S, Federoff N (1983) Molecular identification and isolation of the waxy locus in maize. Cell 35:225–233

    CAS  PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    CAS  PubMed  Google Scholar 

  • Stöger E, Parker M, Christou P, Casey R (2001) Pea legumin overexpressed in wheat endosperm assembles into an ordered paracrystalline matrix. Plant Physol 125:1732–1742

    Article  Google Scholar 

  • Wohlfahrt T, Braun H, Kirik V, Kölle K, Czihal A, Tewes A, Luerssen H, Miséra S, Shutov A, Bäumlein H (1998) Regulation and evolution of seed globulin genes. J Plant Physiol 152:600–606

    CAS  Google Scholar 

  • Woo YM, Hu DW, Larkins BA, Jung R (2001). Genomic analysis of genes expressed in maize endosperm identifies novel seed proteins and clarifies pattern of zein gene expression. Plant Cell 13:2297–2317

    CAS  PubMed  Google Scholar 

  • Yang SH, Moran DL, Jia HW, Bicar EH, Lee M, Scott MP (2002) Expression of a synthetic porcine alpha-lactalbumin gene in the kernels of transgenic maize. Transgenic Res 11:11–20

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. J. Calderon for polyclonal antibody samples and Dr. F. Guevara, from CINVESTAV-IPN, for discussion and reviewing this paper. Thanks are also due to Dr. S. McLean for greenhouse work, Dr. R. J. Peña for analytical services, and to P. Estañol and M. Pacheco for excellent technical assistance, all from CIMMYT. The financial support from CONACYT-México is acknowledged as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Paredes-López.

Additional information

Communicated by J.W. Snape

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rascón-Cruz, Q., Sinagawa-García, S., Osuna-Castro, J.A. et al. Accumulation, assembly, and digestibility of amarantin expressed in transgenic tropical maize. Theor Appl Genet 108, 335–342 (2004). https://doi.org/10.1007/s00122-003-1430-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1430-x

Keywords

Navigation