Skip to main content
Log in

Excretion of polyamines in alfalfa and tobacco suspension-cultured cells and its possible role in maintenance of intracellular polyamine contents

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Changes in polyamines (PAs) in cells and cultivation media of alfalfa (Medicago sativa L.) and tobacco bright yellow 2 (BY-2) (Nicotiana tabacum L.) cell suspension cultures were studied over their growth cycles. The total content of PAs (both free and conjugated forms) was nearly 10 times higher in alfalfa, with high level of free putrescine (Put) (in exponential growth phase it represented about 65–73% of the intracellular Put pool). In contrast, the high content of soluble Put conjugates was found in tobacco cells (in exponential phase about 70% of the intracellular Put). Marked differences occurred in the amount of PAs excreted into the cultivation medium: alfalfa cells excreted at the first day after inoculation 2117.0, 230.5, 29.0 and 88.0 nmol g−1 of cell fresh weight (FW) of Put, spermidine (Spd), spermine (Spm) and cadaverine (Cad), respectively, while at the same time tobacco cells excreted only small amount of Put and Spd (12.7 and 2.4 nmol g−1 FW, respectively). On day 1 the amounts of Put, Spd, Spm and Cad excreted by alfalfa cells represented 21, 38, 12 and 15% of the total pool (intra- plus extra-cellular contents) of Put, Spd, Spm and Cad, respectively. In the course of lag-phase and the beginning of exponential phase the relative contents of extracellular PAs continually decreased (with the exception of Cad). On day 10, the extracellular Put, Spd, Spm and Cad still represented 11.3, 10.9, 2.1 and 27% of their total pools. The extracellular PAs in tobacco cells represented from day 3 only 0.1% from their total pools. The possible role of PA excretion into the cultivation medium in maintenance of intracellular PA contents in the cells of the two cell culture systems, differing markedly in growth rate and PA metabolism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADC:

Arginine decarboxylase

Cad:

Cadaverine

d:

Days

DAO:

Diamine oxidase

EDTA:

Ethylenediaminetetraacetic acid

FW:

Fresh weight

MI:

Mitotic index

ODC:

Ornithine decarboxylase

PAs:

Polyamines

PCA:

Perchloric acid

Put:

Putrescine

SAMDC:

S-adenosylmethionine decarboxylase

Spd:

Spermidine

Spm:

Spermine

References

  • Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317. doi:10.1007/s007260170046

    Article  PubMed  CAS  Google Scholar 

  • Barz W, Beimen A, Dräger B, Jaques U, Otto C, Süper E, Upmeier B (1990) Turnover and storage of secondary metabolites in cell culture. In: Charlwood BV, Rhodes MJC (eds) Secondary products from plant tissue culture. Clarendon Press, Oxford, pp 79–102

    Google Scholar 

  • Bezold TN, Loy JB, Minocha SC (2003) Changes in the cellular content of polyamines in different tissues of seed and fruit of a normal and a hull-less seed variety of pumpkin during development. Plant Sci 164:743–752. doi:10.1016/S0168-9452(0)00035-9

    Article  CAS  Google Scholar 

  • Binarová P, Doležel J (1988) Alfalfa embryogenic cell suspension culture: growth and ploidy level stability. J Plant Physiol 133:561–566

    Google Scholar 

  • Biondi S, Scaramagli S, Capitani F, Altamura MM, Torrigiani P (2001) Methyl jasmonate upregulates biosynthetic gene expression, oxidation and conjugation of polyamines, and inhibits shoot formation in tobacco thin layers. J Exp Bot 52:231–242. doi:10.1093/jexbot/52.355.231

    Article  PubMed  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125. doi:10.1016/S0168-9452(98)00218-0

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microquantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Creus JA, Eucuentra A, Gavalda EG, Barcelo J (1991) Binding of polyamines to different macromolecules in plants. In: Galston AW, Tiburcio AF (eds) Polyamines as modulators of plant development. Ediciones Peninsular, Madrid, pp 30–34

    Google Scholar 

  • Cvikrová M, Binarová P, Eder J, Vágner M, Hrubcová M, Zoń J, Macháčková I (1999) Effect of inhibition of phenylalanine ammonia-lyase activity on growth of alfalfa cell suspension culture: alterations in mitotic index, ethylene production, and contents of phenolics, cytokinins, and polyamines. Physiol Plant 107:329–337. doi:10.1034/j.1399-3054.1999.100310.x

    Article  Google Scholar 

  • Davies PJ (2004) Regulatory factors in hormone action: Level, location and signal transduction. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action. Kluwer, Dordrecht, pp 16–35

    Google Scholar 

  • Doležel J, Čihalíková J, Lucretti S (1992) High-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta 188:93–98. doi:10.1007/BF01160717

    Article  Google Scholar 

  • Faure O, Mengoli M, Nougarede A, Bagni N (1991) Polyamine pattern and biosynthesis in zygotic and somatic embryo stages of Vitis-vinifera. J Plant Physiol 138:545–549

    CAS  Google Scholar 

  • Flores HE (1991) Catabolic Pathway and secondary metabolism of polyamines in plants. In: Galston AW, Tiburcio AF (eds) Polyamines as modulators of plant development. Ediciones Peninsular, Madrid, pp 23–26

    Google Scholar 

  • Galston AW, KaurSawhney R, Altabella T, Tiburcio AF (1997) Plant polyamines in reproductive activity and response to abiotic stress. Bot Acta 110:197–207

    CAS  Google Scholar 

  • Gandre S, Bercovich Z, Kahana C (2002) Ornithine decarboxylase-antizyme is rapidly degraded through a mechanism that requires functional ubiquitin-dependent proteolytic activity. Eur J Biochem 269:1316–1322. doi:10.1046/j.1432-1033.2002.02774.x

    Article  PubMed  CAS  Google Scholar 

  • Gemperlová L, Eder J, Cvikrová M (2005) Polyamine metabolism during the growth cycle of tobacco BY-2 cells. Plant Physiol Biochem 43:375–381. doi:10.1016/j.plaphy.2005.02.012

    PubMed  Google Scholar 

  • Hahlbrock K (1976) Regulation of phenylalanine ammonia-lyase activity in cell-suspension cultures of Petroselinum hortense. Eur J Biochem 63:137–145

    Article  PubMed  CAS  Google Scholar 

  • Hawel III L , Byus CV (2002) A streamlined method for the isolation and quantitation of nanomole levels of exported polyamines in cell culture media. Anal Biochem 311:127–132. doi:10.1016/S0003-2697(02)00423-2

    Article  PubMed  CAS  Google Scholar 

  • Hawel L, Tjandrawinata RR, Fukumoto GH, Byus CV (1994) Biosynthesis and selective export of 1,5-diaminopentane (cadaverine) in mycoplasma-free cultured-mammalian-cells. J Biol Chem 269:7412–7418

    PubMed  CAS  Google Scholar 

  • Hu WW, Gong HB, Pua EC (2005) The pivotal roles of the plant S-adenosylmethionine decarboxylase 5′ untranslated leader sequence in regulation of gene expression at the transcriptional and posttranscriptional levels. Plant Physiol 138:276–286. doi:10.1104/pp.104.056770

    Article  PubMed  CAS  Google Scholar 

  • Hunter DC, Burritt DJ (2005) Light quality influences the polyamine content of lettuce (Lactusa sativa L.) cotyledon explants during shoot production in vitro. Plant Growth Regul 45:53–61. doi:10.1007/s10725-004-5971-z

    Article  CAS  Google Scholar 

  • Koetje DS, Kononowicz H, Hodges TK (1993) Polyamine metabolism associated with growth and embryogenic potential of rice. J Plant Physiol 141:215–221

    CAS  Google Scholar 

  • Königshofer H, Lechner S (2002) Are polyamines involved in the synthesis of heat-shock proteins in cell suspension cultures of tobacco and alfalfa in response to high-temperature stress? Plant Physiol Biochem 40:51–59. doi:10.1016/S0981-9428(01)01347-x

    Article  Google Scholar 

  • Martin-Tanguy J (1985) The occurrence and possible function of hydroxycinnamoyl acid amides in plants. Plant Growth Regul 3:381–399. doi:10.1007/BF00117595

    Article  CAS  Google Scholar 

  • Messiaen J, Van Cutsem P (1999) Polyamines and pectins. II. Modulation of pectic-signal transduction. Planta 208:247–256. doi:10.1007/s004250050556

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30

    CAS  Google Scholar 

  • Paschalidis KA, Aziz A, Geny L, Primikirios NI, Roubelakis-Angelakis KA (2001) Polyamines in grapevine. In: Roubelakis-Angelakis KA (ed) Molecular biology and biotechnology of the grapevine. Kluwer, Dordrecht, pp 109–152

    Google Scholar 

  • Paschalidis KA, Roubelakis-Angelakis KA (2005) Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. Correlations with age, cell division/expansion, and differentiation. Plant Physiol 138:142–152. doi:10.1104/pp.104.05583

    Article  PubMed  CAS  Google Scholar 

  • Peč P, Chudý J, Macholán L (1991) Determination of the activity of diamine oxidase from pea with Z-1,4-diamino-2-butene as a substrát. Biológia 46:665–672

    Google Scholar 

  • Petrášek J, Březinová A, Holík J, Zažimalová E (2002) Excretion of cytokinins into the cultivation medium by suspension-cultured tobacco cells. Plant Cell Rep 21:97–104. doi:10.1007/s00299-001-0433-9

    Article  CAS  Google Scholar 

  • Pfosser M, Königshofer H, Kandeler R (1990) Free, conjugated, and bound polyamines during the cell cycle of synchronized cell suspension cultures of Nicotiana tabacum. J Plant Physiol 136:574–579

    CAS  Google Scholar 

  • Phillips HJ (1973) Dye exclusion tests for cell viability. In: Kruse PF Jr, Patterson MK (eds) Tissue cultures: methods and application. Academic Press, London, p 406

    Google Scholar 

  • Slocum RD, Flores HE, Galston AW, Einstein LH (1989) Improved method for HPLC analysis of polyamines, agmatine and aromatic monoamines in plant tissue. Plant Physiol 89:512–517

    Article  PubMed  CAS  Google Scholar 

  • Tamai T, Shimada Y, Sugimoto T, Shiraishi N, Oji Y (2000) Potassium stimulates the efflux of putrescine in roots of barley seedlings. J Plant Physiol 157:619–626

    CAS  Google Scholar 

  • Tassoni A, Van Buuren M, Franceschetti M, Fornale S, Bagni N (2000) Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiol Biochem 38:383–393. doi:10.1016/S0981-9428(00)00757-9

    Article  CAS  Google Scholar 

  • Theiss C, Bohley P, Voigt J (2002) Regulation by polyamines of ornithine decarboxylase activity and cell division in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol 128:1470–1479. doi:10.1104/pp.010896

    Article  PubMed  CAS  Google Scholar 

  • Thomas T, Thomas TJ (2001) Polyamine in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 58:244–258. doi:10.1007/PL00000852

    Article  PubMed  CAS  Google Scholar 

  • Wink M (1994) The cell culture medium—a functional extracellular compartment of suspension-cultured cells. Plant Cell Tissue Organ Cult 38:307–319. doi:10.1007/BF00033891

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Johannes van Staden for his critical reading of the manuscript and Dr. A. J. Burman, University of Alaska Fairbanks, USA for language corrections. We thank N. Hatašová for excellent technical assistance. This work was supported by the Grant Agency of the Academy of Sciences of the Czech Republic, project A6038303, and by the project AV0Z50380511 of the Academy of Sciences of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Cvikrová.

Additional information

Communicated by A. Atanassov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cvikrová, M., Gemperlová, L., Eder, J. et al. Excretion of polyamines in alfalfa and tobacco suspension-cultured cells and its possible role in maintenance of intracellular polyamine contents. Plant Cell Rep 27, 1147–1156 (2008). https://doi.org/10.1007/s00299-008-0538-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0538-5

Keywords

Navigation