Skip to main content
Log in

Biologia futura: the role of polyamine in plant science

  • Review
  • Published:
Biologia Futura Aims and scope Submit manuscript

Abstract

Polyamines (PAs) are positively charged amines such as putrescine, spermidine and spermine that ubiquitously exist in all organisms. They have been considered as a new type of plant biostimulants, with pivotal roles in many physiological processes. Polyamine levels are controlled by intricate regulatory feedback mechanisms. PAs are directly or indirectly regulated through interaction with signaling metabolites (H202, NO), aminobutyric acid (GABA), phytohormones (abscisic acid, gibberellins, ethylene, cytokinins, auxin, jasmonic acid and brassinosteroids) and nitrogen metabolism (maintaining the balance of C:N in plants). Exogenous applications of PAs enhance the stress resistance, flowering and fruit set, synthesis of bioactive compounds and extension of agricultural crops shelf life. Up-regulation of PAs biosynthesis by genetic manipulation can be a novel strategy to increase the productivity of agricultural crops. Recently, the role of PAs in symbiosis relationships between plants and beneficial microorganisms has been confirmed. PA metabolism has also been targeted to design new harmless fungicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abbasi NA, Ali I, Hafiz IA, Khan AS (2017) Application of polyamines in horticulture: a review Int. J Biosci 10:319–342

    CAS  Google Scholar 

  2. Agudelo-Romero P, Bortolloti C, Pais MS, Tiburcio AF, Fortes AM (2013) Study of polyamines during grape ripening indicate an important role of polyamine catabolism. Plant Physiol Biochem 67:105–119

    CAS  PubMed  Google Scholar 

  3. Agurla S, Gayatri G, Raghavendra AS (2018) Polyamines increase nitric oxide and reactive oxygen species in guard cells of Arabidopsis thaliana during stomatal closure. Protoplasma 255:153–162

    CAS  PubMed  Google Scholar 

  4. Alabdallah O, Ahou A, Mancuso N, Pompili V, Macone A, Pashkoulov D, Tavladoraki P (2017) The Arabidopsis polyamine oxidase/dehydrogenase 5 interferes with cytokinin and auxin signaling pathways to control xylem differentiation. J Exp Bot 68:997–1012

    CAS  PubMed  Google Scholar 

  5. Alcázar R, Bitrián M, Bartels D, Koncz C, Altabella T, Tiburcio AF (2011) Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. Plant Signal Behav 6:243–250

    PubMed  PubMed Central  Google Scholar 

  6. Amri E, Mirzaei M, Moradi M, Zare K (2011) The effects of spermidine and putrescine polyamines on growth of pomegranate (Punica granatum L. cv Rabbab) in salinity circumstance. Int J Plant Physiol 3:43–49

    CAS  Google Scholar 

  7. Angelini R, Cona A, Federico R, Fincato P, Tavladoraki P, Tisi A (2010) Plant amine oxidases “on the move”: an update. Plant Physiol Biochem 48:560–564

    CAS  PubMed  Google Scholar 

  8. Antognoni F, Fornalè S, Grimmer C, Komor E, Bagni N (1998) Longdistance translocation of polyamines in phloem and xylem of Ricinus communis L. plants. Planta 204:520–527

    CAS  Google Scholar 

  9. Anwar R, Mattoo AK, Handa AK (2015) Polyamine interactions with plant hormones: crosstalk at several levels. In: Polyamines. Springer, Tokyo, pp 267–302

    Google Scholar 

  10. Applewhite PB, Kaur-Sawhney R, Galston AW (2000) A role for spermidine in the bolting and flowering of Arabidopsis. Physiol Plant 108:314–320

    CAS  Google Scholar 

  11. Arias M, Carbonell J, Agustí M (2005) Endogenous free polyamines and their role in fruit set of low and high parthenocarpic ability citrus cultivars. J Plant Physiol 162:845–853

    CAS  PubMed  Google Scholar 

  12. Asgarpour A, Babalar M, Ali M, Sarcheshmeh A (2016) The effect of preharvest spray ofputrescine and salicylic acid solutions on some qualitative properties of ‘Granny Smith’ apple fruit. Iran J Hortic Sci 47:445–456

    Google Scholar 

  13. Asgher M, Khan MIR, Anjum NA, Verma S, Vyas D, Per TS, Khan NA (2018) Ethylene and polyamines in counteracting heavy metal phytotoxicity: a crosstalk perspective. J Plant Growth Regul 37:1050–1065

    CAS  Google Scholar 

  14. Atanasov KE, Barboza-Barquero L, Tiburcio AF, Alcázar R (2016) Genome wide association mapping for the tolerance to the polyamine oxidase inhibitor guazatine in Arabidopsis thaliana. Front Plant Sci 7:401–411

    PubMed  PubMed Central  Google Scholar 

  15. Bagni N, Pistocchi R (1985) Putrescine uptake in Saintpaulia petals. Plant Physiol 77:398–402

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Barman K, Asrey R, Pal RK (2011) Putrescine and carnauba wax pre-treatments alleviate chilling injury, enhance shelf life and preserve pomegranate fruit quality during cold storage. Sci Hortic 130:795–800

    CAS  Google Scholar 

  17. Bortolotti C, Cordeiro A, Alcázar R, Borrell A, Culiañez-Macià FA, Tiburcio AF, Altabella T (2004) Localization of arginine decarboxylase in tobacco plants. Physiol Plant 120:84–92

    CAS  PubMed  Google Scholar 

  18. Brill S, Falk OS, Schuldiner S (2012) Transforming a drug/H+ antiporter into a polyamine importer by a single mutation. Proc Natl Acad Sci USA 109:16894–16899

    CAS  PubMed  Google Scholar 

  19. Burns MR, Graminski GF, Weeks RS, Chen Y, O’Brien TG (2009) Lipophilic lysine–spermine conjugates are potent polyamine transport inhibitors for use in combination with a polyamine biosynthesis inhibitor. J Med Chem 52:1983–1993

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Champa WH, Gill MIS, Mahajan BVC, Arora NK (2014) Postharvest treatment of polyamines maintains quality and extends shelf-life of table grapes (Vitis vinifera L.) cv. Flame Seedless. Postharvest Biol Technol 91:57–63

    CAS  Google Scholar 

  21. Choudhary SP, Oral HV, Bhardwaj R, Yu JQ, Tran LSP (2012) Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. J ExpBot 63:5659–5675

    CAS  Google Scholar 

  22. Çömlekcİoğlu N, Arıkan S (2017) Effects of physiological stress and exogenous poliamines on seedling growth and indigo amounts in Isatis tinctoria L. leaves. Mediterr Agric Sci 30:261–267

    Google Scholar 

  23. Crespo-Sempere A, Estiarte N, Marín S, Sanchis V, Ramos AJ (2015) Targeting Fusarium graminearum control via polyamine enzyme inhibitors and polyamine analogs. Food Microbiol 49:95–103

    CAS  PubMed  Google Scholar 

  24. Davarynejad G, Zarei M, Ardakani E, Nasrabadi ME (2013) Influence of putrescine application on storability, postharvest quality and antioxidant activity of two Iranian apricot (Prunus armeniaca L.) cultivars. Not Sci Biol 5:212–219

    CAS  Google Scholar 

  25. De Oliveira LF, Navarro BV, Cerruti GV, Elbl P, Minocha R, Minocha SC, Floh EIS (2018) Polyamine-and amino acid-related metabolism: the roles of arginine and ornithine are associated with the embryogenic potential. Plant Cell Physiol 59:1084–1098

    PubMed  Google Scholar 

  26. Ebeed HT, Hassan NM, Aljarani AM (2017) Exogenous applications of polyamines modulate drought responses in wheat through osmolytes accumulation, increasing free polyamine levels and regulation of polyamine biosynthetic genes. Plant Physiol Biochem 118:438–448

    CAS  PubMed  Google Scholar 

  27. Estiarte N, Crespo-Sempere A, Marín S, Sanchís V, Ramos AJ (2017) Exploring polyamine metabolism of Alternaria alternata to target new substances to control the fungal infection. Food Microbiol 65:193–204

    CAS  PubMed  Google Scholar 

  28. Espasandin FD, Maiale SJ, Calzadilla P, Ruiz OA, Sansberro PA (2014) Transcriptional regulation of 9-cis-epoxycarotenoid dioxygenase (NCED) gene by putrescine accumulation positively modulates ABA synthesis and drought tolerance in Lotus tenuis plants. Plant Physiol Biochem 76:29–35

    CAS  PubMed  Google Scholar 

  29. Freitas VS, de Souza Miranda R, Costa JH, de Oliveira DF, de Oliveira Paula S, de Castro Miguel E, Gomes-Filho E (2018) Ethylene triggers salt tolerance in maize genotypes by modulating polyamine catabolism enzymes associated with H2O2 production. Environ Exp Bot 145:75–86

    CAS  Google Scholar 

  30. Gémes K, Mellidou Ι, Karamanoli K, Beris D, Park KY, Matsi T, Roubelakis-Angelakis KA (2017) Deregulation of apoplastic polyamine oxidase affects development and salt response of tobacco plants. J Plant Physiol 211:1–12

    PubMed  Google Scholar 

  31. Gharbi E, Martínez JP, Benahmed H, Fauconnier ML, Lutts S, Quinet M (2016) Salicylic acid differently impacts ethylene and polyamine synthesis in the glycophyte Solanum lycopersicum and the wild-related halophyte Solanum chilense exposed to mild salt stress. Physiol Plant 158:152–167

    CAS  PubMed  Google Scholar 

  32. Gholami M, Bahabadi SE, Ghanati F, Borojeni LY (2018) Stereo-specific transcript regulation of the polyamine biosynthesis genes by enantiomers of ornithine in tobacco cell culture. Iran J Biotechol 16:124–138

    Google Scholar 

  33. Gong B, Wang XM, Yang F, Li Y, Shi Q (2016) Overexpression of S-adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks. Plant Cell Tissue Organ Cult (PCTOC) 124:377–391

    CAS  Google Scholar 

  34. Gong X, Shi S, Dou F, Song Y, Ma F (2017) Exogenous melatonin alleviates alkaline stress in Malus hupehensis Rehd. by regulating the biosynthesis of polyamines. Molecules 22:1542

    PubMed Central  Google Scholar 

  35. Guo J, Wang S, Yu X, Dong R, Li Y, Mei X, Shen Y (2018) Polyamines regulate strawberry fruit ripening by abscisic acid, auxin, and ethylene. Plant Physiol 177:339–351

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gupta K, Sengupta A, Chakraborty M, Gupta B (2016) Hydrogen peroxide and polyamines act as double edged swords in plant abiotic stress responses. Front Plant Sci 7:1343

    PubMed  PubMed Central  Google Scholar 

  37. Huang XS, Zhang Q, Zhu D, Fu X, Wang M, Zhang Q, Liu JH (2015) ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase. Exp Bot 66:3259–3274

    CAS  Google Scholar 

  38. Hu X, Xu Z, Xu W, Li J, Zhao N, Zhou Y (2015) Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca(NO3)2 stress. Plant Physiol Biochem 92:1–10

    CAS  PubMed  Google Scholar 

  39. Ivanov IP, Shin BS, Loughran G, Tzani I, Young-Baird SK, Cao C, Dever TE (2018) Polyamine control of translation elongation regulates start site selection on antizyme inhibitor mRNA via ribosome queuing. Mol Cell 70:254–264

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jia B, Zheng Q, Zuo J, Gao L, Wang Q, Guan W, Shi J (2018) Application of postharvest putrescine treatment to maintain the quality and increase the activity of antioxidative enzyme of cucumber. Sci Hortic (Amsterdam) 239:210–215

    CAS  Google Scholar 

  41. Jiménez Bremont JF, Marina M, Guerrero-González MDLL, Rossi FR, Sánchez-Rangel D, Rodríguez-Kessler M, Gárriz A (2014) Physiological and molecular implications of plant polyamine metabolism during biotic interactions. Front Plant Sci 5:95–104

    PubMed  PubMed Central  Google Scholar 

  42. Kamiab F, Talaie A, Khezri M, Javanshah A (2014) Exogenous application of free polyamines enhance salt tolerance of pistachio (Pistacia vera L.) seedlings. Plant Growth Regul 72:257–268

    CAS  Google Scholar 

  43. Kamiab F, Zamanibahramabadi E (2016) The effect of different polyamines on some physiological traits as ACC oxidase and superoxide dismutase enzymes activity in Chrysanthemum morifolium cv. ‘Bright Golden Ann’. J Ornam Hortic Plants 6:124–138

    Google Scholar 

  44. Khezri M, Talaie A, Javanshah A, Hadavi F (2010) Effect of exogenous application of free polyamines on physiological disorders and yield of ‘Kaleh-Ghoochi’pistachio shoots (Pistacia vera L.). Sci Hort 125:270–276

    CAS  Google Scholar 

  45. Kim DW, Watanabe K, Murayama C, Izawa S, Niitsu M, Michael AJ, Kusano T (2014) Polyamine oxidase5 regulates Arabidopsis growth through thermospermine oxidase activity. Plant Physiol 165:1575–1590

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim NH, Kim BS, Hwang BK (2013) Pepper arginine decarboxylase is required for polyamine and γ-aminobutyric acid signaling in cell death and defense response. Plant Physiol 162:2067–2083

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Krishnan S, Merewitz EB (2017) Polyamine Application effects on gibberellic acid content in creeping bentgrass during drought stress. J Am Soc Hortic Sci 142:135–142

    CAS  Google Scholar 

  48. Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    CAS  PubMed  Google Scholar 

  49. Liao Z, ZhangGuan X, Zhu Z, Yao X, Yang Y, Jiang Y, Cao Y (2015) Enhancement of the antibiofilm activity of amphotericin B by polyamine biosynthesis inhibitors. Int J Antimicrob Agents 46:45–52

    CAS  PubMed  Google Scholar 

  50. Li B, He L, Guo S, Li J, Yang Y, Yan B, Li J (2013) Proteomics reveal cucumber Spd-responses under normal condition and salt stress. Plant Physiol Biochem 67:7–14

    CAS  PubMed  Google Scholar 

  51. Li H, Meininger CJ, Bazer FW, Wu G (2016) Intracellular sources of ornithine for polyamine synthesis in endothelial cells. Amino Acids 48:2401–2410

    CAS  PubMed  Google Scholar 

  52. Li S, Jin H, Zhang Q (2016) The effect of exogenous spermidine concentration on polyamine metabolism and salt tolerance in zoysiagrass (Zoysia japonica Steud) subjected to short-term salinity stress. Front plant Sci 7:1221–1323

    PubMed  PubMed Central  Google Scholar 

  53. Li Z, Zhang Y, Xu Y, Zhang X, Peng Y, Ma X, Yan Y (2016) Physiological and iTRAQ-based proteomic analyses reveal the function of spermidine on improving drought tolerance in white clover. J Proteome Res 15:1563–1579

    CAS  PubMed  Google Scholar 

  54. Li K, Xing C, Yao Z, Huang X (2017) Pbr MYB 21, a novel MYB protein of Pyrus betulaefolia, functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene. Plant Biotechnol J 15:1186–1203

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Limon A, Mamdani F, Hjelm BE, Vawter MP, Sequeira A (2016) Targets of polyamine dysregulation in major depression and suicide: activity-dependent feedback, excitability, and neurotransmission. Neurosci Biobehav Rev 66:80–91

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu CJ, Wang HR, Wang L, Han YY, Hao JH, Fan SX (2018) Effects of different types of polyamine on growth, physiological and biochemical nature of lettuce under drought stress. In: IOP conference series: earth and environmental science, vol 185, no 1. IOP Publishing, p 012010

  57. Liu J, Yu BJ, Liu YL (2006) Effects of spermidine and spermine levels on salt tolerance associated with tonoplast H+-ATPase and H+-PPase activities in barley roots. Plant Growth Regul 49:119–126

    CAS  Google Scholar 

  58. Liu T, Kim DW, Niitsu M, Berberich T, Kusano T (2014) Oryza sativa polyamine oxidase 1 back-converts tetraamines, spermine and thermospermine, to spermidine. Plant Cell Rep 33:143–151

    CAS  PubMed  Google Scholar 

  59. Liu Y, Gu D, Wu W, Wen X, Liao Y (2013) The relationship between polyamines and hormones in the regulation of wheat grain filling. PLoS ONE 8:e78196

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Luo J, Liu M, Zhang C, Zhang P, Chen J, Guo Z, Lu S (2017) Transgenic centipedegrass (Eremochloa ophiuroides [Munro] Hack.) overexpressing S-adenosylmethionine decarboxylase (SAMDC) gene for improved cold tolerance through involvement of H2O2 and NO signaling. Front Plant Sci 8:1655

    PubMed  PubMed Central  Google Scholar 

  61. Madhulatha P, Gupta A, Gupta S, Kumar A, Pal RK, Rajam MV (2014) Fruit-specific over-expression of human S-adenosylmethionine decarboxylase gene results in polyamine accumulation and affects diverse aspects of tomato fruit development and quality. J Plant Biochem Biotechnol 23:151–160

    CAS  Google Scholar 

  62. Malik AU, Singh Z (2003) Abscission of mango fruitlets as influenced by biosynthesis of polyamines. J Hortic Sci Biotechnol 78:721–727

    CAS  Google Scholar 

  63. Mariani P, Dorazi D, Bagni N (1989) Polyamines in primary walls of carrot cells: endogenous content and interactions. J Plant Physiol 135:508–510

    CAS  Google Scholar 

  64. Marzouk HA, Kassem HA (2011) Improving yield, quality, and shelf life of Thompson seedless grapevine by preharvest foliar applications. Sci Hortic 130:425–430

    CAS  Google Scholar 

  65. Mellidou I, Moschou PN, Ioannidis NE, Pankou C, Gėmes K, Valassakis C, Karamanoli A (2016) Silencing S-Adenosyl-l-Methionine Decarboxylase (SAMDC) in Nicotiana tabacum points at a polyamine-dependent trade-off between growth and tolerance responses. Front Plant Sci 7:379

    PubMed  PubMed Central  Google Scholar 

  66. Mellidou I, Karamanoli K, Beris D, Haralampidis K, Constantinidou HIA, Roubelakis-Angelakis KA (2017) Underexpression of apoplastic polyamine oxidase improves thermotolerance in Nicotiana tabacum. J Plant Physiol 218:171–174

    CAS  PubMed  Google Scholar 

  67. Mo H, Wang X, Zhang Y, Zhang G, Zhang J, Ma Z (2015) Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahliae. Plant J 83:962–975

    CAS  PubMed  Google Scholar 

  68. Mulangi V, Phuntumart V, Aouida M, Ramotar D, Morris P (2012) Functional analysis of OsPUT1, a rice polyamine uptake transporter. Planta 235:1–11

    CAS  PubMed  Google Scholar 

  69. Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255

    CAS  PubMed  Google Scholar 

  70. Nahed GAA, Lobna ST, Soad MI (2009) Some studies on the effect of putrescine, ascorbic acid and thiamine on growth, flowering and some chemical constituents of gladiolus plants at Nubaria. Ozean J Appl Sci 2:169–179

    Google Scholar 

  71. Niemi K, Julkunen-Tiitto R, Häggman H, Sarjala T (2006) Suillus variegatus causes significant changes in the content of individual polyamines and flavonoids in Scots pine seedlings during mycorrhiza formation in vitro. J Exp Bot 58:391–401

    PubMed  Google Scholar 

  72. Nishio T, Yoshikawa Y, Fukuda W, Umezawa N, Higuchi T, Fujiwara S, Yoshikawa K (2018) Branched-chain polyamine found in hyperthermophiles induces unique temperature-dependent structural changes in genome-size DNA. Chem Phys Chem 19:2299–2304

    CAS  PubMed  Google Scholar 

  73. Palma F, Carvajal F, Ramos JM, Jamilena M, Garrido D (2015) Effect of putrescine application on maintenance of zucchini fruit quality during cold storage: contribution of GABA shunt and other related nitrogen metabolites. Postharvest Biol Technol 99:131–140

    CAS  Google Scholar 

  74. Pál M, Szalai G, Janda T (2015) Speculation: polyamines are important in abiotic stress signaling. Plant Sci 237:16–23

    PubMed  Google Scholar 

  75. Pang XM, Zhang ZY, Wen XP, Ban Y, Moriguchi T (2007) Polyamines, all-purpose players in response to environment stresses in plants. Plant Stress 1:173–188

    Google Scholar 

  76. Patel N, Gantait S, Panigrahi J (2019) Extension of postharvest shelf-life in green bell pepper (Capsicum annuum L.) using exogenous application of polyamines (spermidine and putrescine). Food Chem 275:681–687

    CAS  PubMed  Google Scholar 

  77. Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90:635–644

    PubMed  Google Scholar 

  78. Petkou I, Pritsa T, Sfakiotakis E (2003) Effect of dipping and pressure infiltration of putrescine on the propylene induced autocatalytic ethylene production and ripening of ‘Hayward’ kiwifruit. Acta Hortic 610:261–266

    CAS  Google Scholar 

  79. Pottosin I, Velarde-Buendía AM, Bose J, Fuglsang AT, Shabala S (2014) Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots. J Exp Bot 65:2463–2472

    CAS  PubMed  Google Scholar 

  80. Qiang-Sheng WU, Ying-Ning ZOU (2009) The effect of dual application of arbuscular mycorrhizal fungi and polyamines upon growth and nutrient uptake on trifoliate orange (Poncirus trifoliata) seedlings. Not Bot Horti Agrobot Cluj-Napoca 37:95–98

    Google Scholar 

  81. Quinet M, Ndayiragije A, Lefevre I, Lambillotte B, Dupont-Gillain CC, Lutts S (2010) Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. J Exp Bot 61:2719–2733

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Raju Dantuluri VS, Misra RL, Singh VP (2008) Effect of polyamines on post harvest life of gladiolus spikes. J Ornam Hortic 11:66–68

    Google Scholar 

  83. Recalde L, Vázquez A, Groppa MD, Benavides MP (2018) Reactive oxygen species and nitric oxide are involved in polyamine-induced growth inhibition in wheat plants. Protoplasma 255:1295–1307

    CAS  PubMed  Google Scholar 

  84. Rezvanypour S, Hatamzadeh A, Elahinia SA, Asghari HR (2015) Exogenous polyamines improve mycorrhizal development and growth and flowering of Freesia hybrida. J Hortic Res 23:17–25

    CAS  Google Scholar 

  85. Sagor GHM, Zhang S, Kojima S, Simm S, Berberich T, Kusano T (2016) Reducing cytoplasmic polyamine oxidase activity in Arabidopsis increases salt and drought tolerance by reducing reactive oxygen species production and increasing defense gene expression. Front Plant Sci 7:214–226

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sakamoto A, Terui Y, Yoshida T, Yamamoto T, Suzuki H, Yamamoto K, Kashiwagi K (2015) Three members of polyamine modulon under oxidative stress conditions: two transcription factors (SoxR and EmrR) and a glutathione synthetic enzyme (GshA). PLoS ONE 10:123–132

    Google Scholar 

  87. Salo HM, Sarjala T, Jokela A, Häggman H, Vuosku J (2016) Moderate stress responses and specific changes in polyamine metabolism characterize Scots pine somatic embryogenesis. Tree Physiol 36:392–402

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sandip AG, Carucci A, Renato A, Tisi A, Franchi S, Tavladoraki P, Cona A (2015) The apoplastic copper amine oxidase AtAO1 mediates jasmonic acid-induced protoxylem differentiation in Arabidopsis roots. Plant Physiol 168:690–707

    Google Scholar 

  89. Sauter M, Moffatt B, Saechao MC, Hell R, Wirtz M (2013) Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 451:145–154

    CAS  PubMed  Google Scholar 

  90. Sequera-Mutiozabal MI, Erban A, KopkaJ Atanasov KE, Bastida J, Fotopoulos V, Tiburcio AF (2016) Global metabolic profiling of Arabidopsis polyamine oxidase 4 (AtPAO4) loss-of-function mutants exhibiting delayed dark-induced senescence. Front Plant Sci 7:173

    PubMed  PubMed Central  Google Scholar 

  91. Serrano M, Martinez-Romero D, Guillén F, Valero D (2003) Effects of exogenous putrescine on improving shelf life of four plum cultivars. Postharvest Biol Technol 30:259–271

    CAS  Google Scholar 

  92. Sharma S, Pareek S, Sagar N, Valero D, Serrano M (2017) Modulatory effects of exogenously applied polyamines on postharvest physiology, antioxidant system and shelf life of fruits: a review. Int J Mol Sci 18:1789

    PubMed Central  Google Scholar 

  93. Shen Y, Ruan Q, Chai H, Yuan Y, Yang W, Chen J, Shi H (2016) The Arabidopsis polyamine transporter LHR 1/PUT 3 modulates heat responsive gene expression by enhancing mRNA stability. Plant J 88:1006–1021

    CAS  PubMed  Google Scholar 

  94. Shi J, Fu XZ, Peng T, Huang XS, Fan QJ, Liu JH (2010) Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol 30(7):914–922

    CAS  PubMed  Google Scholar 

  95. Siruieneja B, Mortazavi SMH, Moalemmi N, Eshghi S (2013) The Effect of postharvest application of putrescine and UV-C irradiation on strawberry (Fragaria × ananasa cv. Selva) fruit quality. Plant Prod 36:117–127

    Google Scholar 

  96. Sobolev AP, Neelam A, Fatima T, Shukla V, Handa AK, Mattoo AK (2014) Genetic introgression of ethylene-suppressed transgenic tomatoes with higher-polyamines trait overcomes many unintended effects due to reduced ethylene on the primary metabolome. Front Plant Sci 5:632–645

    PubMed  PubMed Central  Google Scholar 

  97. Song Y, Miao Y, Song CP (2014) Behind the scenes: the roles of reactive oxygen species in guard cells. New Phytol 201(4):1121–1140

    CAS  PubMed  Google Scholar 

  98. Sugiyama S, Vassylyev DG, Matsushima M, Kashiwagi K, Igarashi K, Morikawa K (1996) Crystal structure of PotD, the primary receptor of the polyamine transport system in Escherichia coli. J Biol Chem 271:9519–9525

    CAS  PubMed  Google Scholar 

  99. Szalai G, Janda K, Darkó É, Janda T, Peeva V, Pál M (2017) Comparative analysis of polyamine metabolism in wheat and maize plants. Plant Physiol Biochem 112:239–250

    CAS  PubMed  Google Scholar 

  100. Takahashi Y, Cong R, Sagor GHM, Niitsu M, Berberich T, Kusano T (2010) Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana. Plant Cell Rep 9:955–965

    Google Scholar 

  101. Talaat NB (2015) Effective microorganisms modify protein and polyamine pools in common bean (Phaseolus vulgaris L.) plants grown under saline conditions. Sci Hortic 190:1–10

    CAS  Google Scholar 

  102. Talaat NB, Shawky BT (2016) Dual application of 24-epibrassinolide and spermine confers drought stress tolerance in maize (Zea mays L.) by modulating polyamine and protein metabolism. J Plant Growth Regul 35:518–533

    CAS  Google Scholar 

  103. Tanou G, Ziogas V, Belghazi M, Christou A, Filippou P, Job D, Molassiotis A (2014) Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant Cell Environ 37:864–885

    CAS  PubMed  Google Scholar 

  104. Tassoni A, Napier RM, Franceschetti M, Venis MA, Bagni N (2002) Spermidine-binding proteins. Purification and expression analysis in maize. Plant Physiol 128:1303–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Tassoni A, Antognoni F, Bagni N (1996) Polyamine binding to plasma membrane vesicles isolated from zucchini hypocotyls. Plant Physiol 110:817–824

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tavladoraki P, Cona A, Angelini R (2016) Copper-containing amine oxidases and FAD-dependent polyamine oxidases are key players in plant tissue differentiation and organ development. Front Plant Sci 7:824

    PubMed  PubMed Central  Google Scholar 

  107. Terui Y, Yoshida T, Sakamoto A, Saito D, OshimaT Kawazoe M, Kashiwagi K (2018) Polyamines protect nucleic acids against depurination. Int J Biochem Cell Biol 99:147–153

    CAS  PubMed  Google Scholar 

  108. Tiburcio AF, Altabella T, Borrell A, Masgrau C (1997) Polyamine metabolism and its regulation. Physiol Plant 100(3):664–674

    CAS  Google Scholar 

  109. Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18

    CAS  PubMed  Google Scholar 

  110. Tsaniklidis G, Kotsiras A, Tsafouros A, Roussos PA, Aivalakis G, Katinakis P, Delis C (2016) Spatial and temporal distribution of genes involved in polyamine metabolism during tomato fruit development. Plant Physiol Biochem 100:27–36

    CAS  PubMed  Google Scholar 

  111. Vassylyev DG, Tomitori H, Kashiwagi K, Morikawa K, Igarashi K (1998) Crystal structure and mutational analysis of the Escherichia coli putrescine receptor structural basis for substrate specificity. J Biol Chem 273:17604–17609

    CAS  PubMed  Google Scholar 

  112. Venu A, Ramdevputra MV (2018) Effect of polyamines and NAA application on quality and shelf life of mango (Mangifera indica L.) cv. Kesar. Int J Curr Microbiol Appl Sci 7:2906–2911

    Google Scholar 

  113. Vondráková Z, Eliášová K, Vágner M, Martincová O, Cvikrová M (2015) Exogenous putrescine affects endogenous polyamine levels and the development of Picea abies somatic embryos. Plant Growth Regul 75:405–414

    Google Scholar 

  114. Wang W, Liu JH (2016) CsPAO4 of Citrus sinensis functions in polyamine terminal catabolism and inhibits plant growth under salt stress. Sci Rep 6:31384

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang W, Liu JH (2015) Genome-wide identification and expression analysis of the polyamine oxidase gene family in sweet orange (Citrus sinensis). Gene 555:421–429

    CAS  PubMed  Google Scholar 

  116. Wu HY, Chen S, Hsieh JY, Chou F, Wang YH, Lin WT, Lin CL (2015) Structural basis of antizyme-mediated regulation of polyamine homeostasis. Proc Natl Acad Sci 112:11229–11234

    CAS  PubMed  Google Scholar 

  117. Xie SS, Wu HJ, Zang HY, Wu LM, Zhu QQ, Gao XW (2014) Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol Plant Microbe Interact 27:655–663

    CAS  PubMed  Google Scholar 

  118. Yang LI, Hong XU, Wen XX, Liao YC (2016) Effect of polyamine on seed germination of wheat under drought stress is related to changes in hormones and carbohydrates. J Integr Agric 15:2759–2774

    Google Scholar 

  119. Yin L, Wang S, Tanaka K, Fujihara S, Itai A, Den X, Zhang S (2016) Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant Cell Environ 39:245–258

    CAS  PubMed  Google Scholar 

  120. Yordanova MM, Loughran G, Zhdanov AV, Mariotti M, Kiniry SJ, O’Connor PB, Gladyshev VN (2018) AMD1 mRNA employs ribosome stalling as a mechanism for molecular memory formation. Nature 553:356–365

    CAS  PubMed  Google Scholar 

  121. Yuan L, Zhu S, Li S, Shu S, Sun J, Guo S (2014) 24-Epibrassinolide regulates carbohydrate metabolism and increases polyamine content in cucumber exposed to Ca(NO3)2 stress. Acta Physiol Plant 36:2845–2852

    CAS  Google Scholar 

  122. Zapata PJ, Serrano M, García-Legaz MF, Pretel MT, Botella MA (2017) Short term effect of salt shock on ethylene and polyamines depends on plant salt sensitivity. Front Plant Sci 8:855

    PubMed  PubMed Central  Google Scholar 

  123. Zheng Q, Zuo J, Gu S, Gao L, Hu W, Wang Q, Jiang A (2019) Putrescine treatment reduces during senescence of broccoli (Brassica oleracea L. var. italica). Postharvest Biol Technol 152:29–35

    CAS  Google Scholar 

  124. Zhao F, Song CP, He J, Zhu H (2007) Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol 145(3):1061–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhao H, Zhang K, Zhou X, Xi L, Wang Y, Xu H, Zou Z (2017) Melatonin alleviates chilling stress in cucumber seedlings by up-regulation of CsZat12 and modulation of polyamine and abscisic acid metabolism. Sci Rep 7:4998

    PubMed  PubMed Central  Google Scholar 

  126. Zierer W, Hajirezaei MR, Eggert K, Sauer N, von Wirén N, Pommerrenig B (2016) Phloem-specific methionine recycling fuels polyamine biosynthesis in a sulfur-dependent manner and promotes flower and seed development. Plant Physiol 170:790–806

    CAS  PubMed  Google Scholar 

Download references

Funding

This work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally contributed to collecting the information and writing the manuscript.

Corresponding author

Correspondence to Fereshteh Kamiab.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamiab, F., Tavassolian, I. & Hosseinifarahi, M. Biologia futura: the role of polyamine in plant science. BIOLOGIA FUTURA 71, 183–194 (2020). https://doi.org/10.1007/s42977-020-00027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42977-020-00027-3

Keywords

Navigation