Skip to main content

Advertisement

Log in

Engineering resistance to PVY in different potato cultivars in a marker-free transformation system using a ‘shooter mutant’ A. tumefaciens

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

In this work, Potato virus Y (PVY) resistant potatoes were generated using an environmentally safe construct. For this purpose, a ‘shooter’ mutant Agrobacterium-based transformation system was used. The isopentenyl transferase gene (ipt) present on the Ti plasmid of ‘shooter’ strains enhances shoot regeneration and can be used as a phenotypic selection marker. The introduced marker-free binary vector carried a hairpin construct derived from the coat protein gene of PVY-NTN strain in order to induce gene silencing. Transformation resulted in high regeneration rates (1.4–5.7 shoots per explant). With pre-selection for the ipt + phenotype the transformation frequency was 24–53%, while without selection 12–28% of the shoots were PCR positive. The presence of the transgene was verified by Southern hybridization. In 16 of 31 challenged transformant lines PVY could be detected neither by RT-PCR nor by back inoculation. A 62.5% of these resistant lines proved to be also ipt-free. This transformation system was reproducible in four potato cultivars, suggesting that it could easily be adapted for other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CP:

Coat protein

gus :

Beta-glucuronidase gene

hpt :

Hygromycin phosphotransferase gene

ipt :

Isopentenyl transferase gene

nptII :

Neomycin phosphotransferase gene

PTGS:

Post-transcriptional gene silencing

PVX:

Potato virus X

PVY:

Potato virus Y

YCP:

The coat protein region of the Potato virus Y genome used in this paper

References

  • Aaziz R, Tepfer M (1999) Recombination in RNA viruses and in virus-resistant transgenic plants. J Gen Virol 80:1339–1346

    PubMed  CAS  Google Scholar 

  • Barry GF, Rogers SG, Fraley RT, Brand L (1984) Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci USA 81:4776–4780

    Article  PubMed  CAS  Google Scholar 

  • Beczner L, Horváth J, Romhányi I, Förster H (1984) Studies on the etiology of tuber necrotic ringspot disease in potato. Potato Res 27:339–352

    Article  Google Scholar 

  • Chilton M-D, Curier TC, Farrand SK, Bendich AJ, Gordon MP, Nester EW (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci USA 71:441–452

    Article  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    Article  PubMed  CAS  Google Scholar 

  • de Vetten N, Wolters AM, Raemakers K, van der Meer I, ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442

    Article  PubMed  CAS  Google Scholar 

  • Farinelli L, Malnoë P, Collet GF (1992) Heterologous encapsidation of potato virus Y strain O (PVY-O) with the transgene protein of PVY strain N (PVY-N) in Solanum tuberosum cv. Bintje. Biotechnology 10:1020–1025

    Article  CAS  Google Scholar 

  • Fladung M (1999) Gene stability in transgenic aspen (Populus). I. Flanking DNA sequences and T-DNA structure. Mol Gen Genet 260:574–581

    Article  PubMed  CAS  Google Scholar 

  • Gargouri-Bouzid R, Jaoua L, Mansour R B, Hathat Y, Ayadi M, Ellouz R (2005) PVY resistant transgenic potato plants (cv. Claustar) expressing the viral coat protein. J Plant Biotechnol 3:1–5

    Article  Google Scholar 

  • Holsters M, Silva B, van Vliet F, Genetello C, de Block M, Dhaese P, Depicker A, Inzé D, Engler R, Villaroel R, van Montagu M, Schell J (1980) The functional organization of the nopaline A. tumefaciens plasmid pTiC58. Plasmid 3:212–230

    Article  PubMed  CAS  Google Scholar 

  • Höfgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 20:9877

    Article  Google Scholar 

  • Huang S, Gilbertson LA, Adams TH, Malloy KP, Reisenbigler EK, Birr DH, Snyder MW, Zhang Q, Luethy MH (2004) Generation of marker-free transgenic maize by regular two-border Agrobacterium transformation vectors. Transgenic Res 13:451–461

    Article  PubMed  CAS  Google Scholar 

  • Johansen E (1996) Intron insertion facilitates amplification of cloned virus cDNA in Escherichia coli while biological activity is reestablished after transcription in vivo. Proc Natl Acad Sci USA 93:12400–12405

    Article  PubMed  CAS  Google Scholar 

  • Kollar A, Thole V, Dalmay T, Salamon P, Balazs E (1993) Efficient pathogen-derived resistance induced by integrated potato virus Y coat protein gene in tobacco. Biochimie 75:623–629

    Article  PubMed  CAS  Google Scholar 

  • Malnoë P, Farinelli L, Collet G, Reust W (1994) Small-scale field tests with transgenic potato, cv Bintje, to test the resistance to primary and secondary infections with potato virus Y. Plant Mol Biol 25:963–975

    Article  PubMed  Google Scholar 

  • Mäki-Valkama T, Pehu T, Santala A, Valkonen JPT, Koivu K, Lehto K, Pehu E (2000) High level of resistance to potato virus Y by expressing P1 sequence in antisense orientation in transgenic potato. Mol Breed 6:95–104

    Article  Google Scholar 

  • Mihálka V, Balázs E, Nagy I (2003) Binary transformation systems based on ‘shooter’ mutants of Agrobacterium tumefaciens: a simple, efficient and universal gene transfer technology that permits marker gene elimination. Plant Cell Rep 21:778–784

    PubMed  Google Scholar 

  • Mihálka V, Fári M, Szász A, Balázs E, Nagy I (2000) Optimised protocols for efficient plant regeneration and gene transfer in pepper (Capsicum annuum L.) J Plant Biotechnol 2:143–149

    Google Scholar 

  • Miller M, Tagliani L, Wang N, Berka B, Bidney D, Zhao ZY (2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11:381–396

    Article  PubMed  CAS  Google Scholar 

  • Missiou A, Kalantidis K, Boutla A, Tzortzakaki S, Tabler M, Tsagris M (2004) Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Mol Breed 14:185–187

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Newell CA, Rozman R, Hinchee MA, Lawson EC, Haley L, Sanderson P, Kaniewski W, Tumer NE, Horsch RB, Fraley RT (1991) Agrobacterium-mediated transformation of Solanum tuberosum L. cv. ‘Russet Burbank’. Plant Cell Rep 10:30–34

    Article  CAS  Google Scholar 

  • Nie X, Singh RP (2002) Probable geographical grouping of PVYN and PVYNTN based on sequence variation in P1 and 5′-UTR of PVY genome and methods for differentiating North American PVYNTN. J Virol Methods 103:145–156

    Article  PubMed  CAS  Google Scholar 

  • Risseeuw E, Franke-van Dijk ME, Hooykaas PJ (1997) Gene targeting and instability of Agrobacterium T-DNA loci in the plant genome. Plant J 11:717–728

    Article  PubMed  CAS  Google Scholar 

  • Rommens MC, Humara MJ, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K (2004) Crop improvement through modification of the plant's own genome. Plant Physiol 135:421–431

    Article  PubMed  CAS  Google Scholar 

  • Sharp PJ, Kreis M, Shewry PR, Gale MD (1988) Location of beta-amylase sequences in wheat and its relatives. Theor Appl Genet 75:286–290

    Article  CAS  Google Scholar 

  • Smith HA, Powers H, Swaney S, Brown C, Dougherty WG (1995) Transgenic potato virus Y resistance in potato: evidence for an RNA-mediated cellular response. Phytopathology 85:864–870

    Article  CAS  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Gene expression: total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  PubMed  CAS  Google Scholar 

  • Srivastava V, Vasil V, Vasil IK (1996) Molecular characterization of the fate of transgenes in transformed wheat (Triticum aestivum L.). Theor Appl Genet 92:1031–1037

    Article  CAS  Google Scholar 

  • Varrelmann M, Palkovics L, Maiss E (2000) Transgenic or plant expression vector-mediated recombination of Plum pox virus. J Virol 74:7462–7469

    Article  PubMed  CAS  Google Scholar 

  • Vervliet G, Holsters M, Teuchy H, van Montagu M, Schell J (1975) Characterization of different plaque-forming and defective temperate phages in Agrobacterium strains. J Gen Virol 26:33–38

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 165–166

    Google Scholar 

  • Yoder I, Goldsbrough P (1994) Transformation systems for generating marker-free transgenic plants. Biotechnology 12:263–267

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Zsófia Bánfalvi and Dr. Brigitta Dudás for critical reading and editing the manuscript, to Mihály Kondrák and Apor Jeney for their help with the Southern analysis. This work was supported by the Hungarian Széchenyi NKFP-4/0023 grant (“Potato competitiveness”) and the Hungarian OTKA Science School (TS 447778). L. Palkovics was the recipient of a Bolyai scholarship (Hungarian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ágnes Bukovinszki.

Additional information

Communicated by D. Dudits

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukovinszki, Á., Divéki, Z., Csányi, M. et al. Engineering resistance to PVY in different potato cultivars in a marker-free transformation system using a ‘shooter mutant’ A. tumefaciens . Plant Cell Rep 26, 459–465 (2007). https://doi.org/10.1007/s00299-006-0257-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0257-8

Keywords

Navigation