Skip to main content
Log in

Transgenic rice plants expressing trichothecene 3-O-acetyltransferase show resistance to the Fusarium phytotoxin deoxynivalenol

  • Biotic and Abiotic Stress
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Fusarium head blight (FHB) is a devastating disease of small grain cereal crops caused by the necrotrophic pathogen Fusarium graminearum and Fusarium culmorum. These fungi produce the trichothecene mycotoxin deoxynivalenol (DON) and its derivatives, which enhance the disease development during their interactions with host plants. For the self-protection, the trichothecene producer Fusarium species have Tri101 encoding trichothecene 3-O-acetyltransferase. Although transgenic expression of Tri101 significantly reduced inhibitory action of DON on tobacco plants, there are several conflicting observations regarding the phytotoxicity of 3-acetyldeoxynivalenol (3-ADON) to cereal plants; 3-ADON was reported to be highly phytotoxic to wheat at low concentrations. To examine whether cereal plants show sufficient resistance to 3-ADON, we generated transgenic rice plants with stable expression and inheritance of Tri101. While root growth of wild-type rice plants was severely inhibited by DON in the medium, this fungal toxin was not phytotoxic to the transgenic lines that showed trichothecene 3-O-acetylation activity. This is the first report demonstrating the DON acetylase activity and DON-resistant phenotype of cereal plants expressing the fungal gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anzai H, Yoneyama K, Yamaguchi I (1989) Transgenic tobacco resistant to a bacterial disease by the detoxification of a pathogenic toxin. Mol Gen Genet 219:492–494

    Article  CAS  Google Scholar 

  • Baxter JA, Terhune SJ, Qureshi SA (1983) Use of chromotropic-acid for improved thin-layer chromatographic visualization of trichothecene mycotoxins. J Chromatogr 261:130–133

    Article  CAS  Google Scholar 

  • Bruins MBM, Karsai I, Schepers J, Snijders CHA (1993) Phytotoxicity of deoxynivalenol to wheat tissue with regard to in vitro selection for Fusarium head blight resistance. Plant Sci 94:195

    Article  CAS  Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci USA 90:11212–11216

    Article  PubMed  CAS  Google Scholar 

  • Dahleen LS, McCormick SP (2001) Trichothecene toxin effects on barley callus and seedling growth. Cereal Res Commun 29:115–120

    CAS  Google Scholar 

  • Desjardins AE, Hohn TM, McCormick SP (1993) Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Rev 57:595–604

    PubMed  CAS  Google Scholar 

  • Eudes F, Comeau A, Rioux S, Collin J (2000) Phytotoxicity of eight mycotoxins associated with Fusarium in wheat head blight. Can J Plant Pathol 22:286–292

    Article  CAS  Google Scholar 

  • Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525

    Article  CAS  PubMed  Google Scholar 

  • Higa A, Kimura M, Mimori K, Ochiai-Fukuda T, Tokai T, Takahashi-Ando N, Nishiuchi T, Igawa T, Fujimura M, Hamamoto H, Usami R, Yamaguchi I (2003) Expression in cereal plants of genes that inactivate Fusarium mycotoxins. Biosci Biotechnol Biochem 67:914–918

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Kaneko I, Komiyama M, Takatsuki A, Koshino H, Yoneyama K, Yamaguchi I (1998) Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. Cloning and characterization of Tri101. J Biol Chem 273:1654–1661

    Article  PubMed  CAS  Google Scholar 

  • McCormick SP, Alexander NJ, Trapp SE, Hohn TM (1999) Disruption of TRI101, the gene encoding trichothecene 3-O-acetyltransferase, from Fusarium sporotrichioides. Appl Environ Microbiol 65:5252–5256

    PubMed  CAS  Google Scholar 

  • McElroy D, Blowers AD, Jenes B, Wu R (1991) Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for use in monocot transformation. Mol Gen Genet 231:150–160

    Article  PubMed  CAS  Google Scholar 

  • Mitterbauer R, Poppenberger B, Raditschnig A, Lucyshyn D, Lemmens M, Glossl J, Adam G (2004) Toxin-dependent utilization of engineered ribosomal protein L3 limits trichothecene resistance in transgenic plants. Plant Biotechnol J 2:329–340

    Article  PubMed  CAS  Google Scholar 

  • Muhitch MJ, McCormick SP, Alexander NJ, Hohn TM (2000) Transgenic expression of the TRI101 or PDR5 gene increases resistance of tobacco to the phytotoxic effects of the trichothecene 4,15-diacetoxyscirpenol. Plant Sci 157:201–207

    Article  PubMed  CAS  Google Scholar 

  • Nishiuchi T, Masuda D, Nakashita H, Ichimura K, Shinozaki K, Yoshida S, Kimura M, Yamaguchi I, Yamaguchi K (2006) Fusarium phytotoxin trichothecenes have an elicitor-like activity in Arabidopsis thaliana, but the activity differed significantly among their molecular species. Mol Plant Microbe Interact 19:512–520

    PubMed  CAS  Google Scholar 

  • Ochiai-Fukuda T, Takahashi-Ando N, Ohsato S, Igawa T, Kadokura K, Hamamoto H, Nakasako M, Kudo T, Shibata T, Yamaguchi I, Kimura M (2006) A fluorescent antibiotic resistance marker for rapid production of transgenic rice plants. J Biotechnol 122:521–527

    Article  PubMed  CAS  Google Scholar 

  • Okubara PA, Blechl AE, McCormick SP, Alexander NJ, Dill-Macky R, Hohn TM (2002) Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor Appl Genet 106:74–83

    PubMed  CAS  Google Scholar 

  • Pestka JJ, Zhou HR, Moon Y, Chung YJ (2004) Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol Lett 153:61–73

    Article  PubMed  CAS  Google Scholar 

  • Rocha O, Ansari K, Doohan FM (2005) Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam 22:369–378

    PubMed  CAS  Google Scholar 

  • Shifrin VI, Anderson P (1999) Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J Biol Chem 274:13985–13992

    Article  PubMed  CAS  Google Scholar 

  • Tyc K, Konarska M, Gross HJ, Filipowicz W (1984) Multiple ribosome binding to the 5′-terminal leader sequence of tobacco mosaic virus RNA. Assembly of an 80S ribosome X mRNA complex at the AUU codon. Eur J Biochem 140:503–511

    Article  PubMed  CAS  Google Scholar 

  • Wakita Y, Otani M, Iba K, Shimada T (1998) Co-integration, co-expression and co-segregation of an unlinked selectable marker gene and NtFAD3 gene in transgenic rice plants produced by particle bombardment. Genes Genet Syst 73:219–226

    Article  PubMed  CAS  Google Scholar 

  • Wakulinski W (1989) Phytotoxicity of the secondary metabolites of fungi causing wheat head fusariosis (head blight). Acta Physiol Plant 11:301–306

    CAS  Google Scholar 

  • Wang YZ, Miller JD (1988) Effects of Fusarium graminearum metabolites on wheat tissue in relation to Fusarium head blight resistance. J Phytopathol 122:118–125

    CAS  Google Scholar 

  • Xie Y, Wu R (1989) Rice alcohol dehydrogenase genes: anaerobic induction, organ specific expression and characterization of cDNA clones. Plant Mol Biol 13:53–68

    Article  PubMed  CAS  Google Scholar 

  • Zamir LO, Nikolakakis A, Devor KA, Sauriol F (1996) Biosynthesis of the trichothecene 3-acetyldeoxynivalenol. Is isotrichodermin a biosynthetic precursor? J Biol Chem 271:27353–27359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. D. McElroy and R. Wu for the gift of vectors with the rice Act1 promoter (McElroy et al. 1991). This research was supported by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Kimura.

Additional information

Communicated by A. Atanassov

S. Ohsato and T. Ochiai-Fukuda should be considered as joint first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohsato, S., Ochiai-Fukuda, T., Nishiuchi, T. et al. Transgenic rice plants expressing trichothecene 3-O-acetyltransferase show resistance to the Fusarium phytotoxin deoxynivalenol. Plant Cell Rep 26, 531–538 (2007). https://doi.org/10.1007/s00299-006-0251-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0251-1

Keywords

Navigation