Skip to main content
Log in

Plastid transformants of tomato selected using mutations affecting ribosome structure

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Tomato plastid transformants were obtained using two vectors containing cloned plastid DNA of either Nicotiana tabacum or Solanum nigrum and including point mutations conferring resistance to spectinomycin and streptomycin. Transformants were recovered after PEG-mediated direct DNA uptake into protoplasts, followed by selection on spectinomycin-containing medium. Sixteen lines contained the point mutation, as confirmed by mapping restriction enzyme sites. One line obtained with each vector was analysed in more detail, in comparison with a spontaneous spectinomycin-resistant mutant. Integration of the cloned Solanum or Nicotiana plastid DNA, by multiple recombination events, into the tomato plastome was confirmed by sequence analysis of the targeted region of plastid DNA in the inverted repeat region. Maternal inheritance of spectinomycin and streptomycin resistances or sensitivity in seedlings also confirmed the transplastomic status of the two transformants. The results demonstrate the efficacy in tomato of a selection strategy which avoids the integration of a dominant bacterial antibiotic resistance gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BAP:

Benzylaminopurine

HEPES:

N-2-Hydroxyehtylpiperazine-N′-2-ethanesulfonic acid

MES buffer:

2-(4-Morpholino)-ethane sulfonic acid

NAA:

α-Naphthaleneacetic acid

PEG:

Polyethylene glycol

ptDNA:

Plastid DNA

Spec:

Spectinomycin

Strep:

Streptomycin

2,4-D:

2,4-Dichlorophenoxyacetic acid

References

  • Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312:425–438

    Article  CAS  PubMed  Google Scholar 

  • Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241:49–56

    Article  CAS  PubMed  Google Scholar 

  • Corneille S, Lutz K, Svab Z, Maliga P (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J 27:171–178

    Article  CAS  PubMed  Google Scholar 

  • Dirks R, Sidorov V, Tulmans C (1996) A new protoplast culture system in Daucus carota L and its applications for mutant selection and transformation. Theor Appl Genet 93:809–815

    Article  Google Scholar 

  • Dix PJ, Kavanagh TA (1995) Transformation the plastome: genetic markers and DNA delivery systems. Euphytica 85:29–34

    Article  CAS  Google Scholar 

  • Golds TJ, Maliga P, Koop HU (1993) Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum. Bio/Technology 11:95–97

    CAS  Google Scholar 

  • Hajdukiewitz PTJ, Gilbertson L, Staub JW (2001) Multiple pathways for Cre/lox-mediated recombination in plastids. Plant J 27:161–170

    CAS  PubMed  Google Scholar 

  • Heifetz PB (2000) Genetic engineering of the chloroplast. Biochemie 82:655–666

    Article  CAS  Google Scholar 

  • Horvath EM, Peter SO, Joet T, Rumeau D, Cournac L, Horvath GV, Kavanagh TA, Schafer C, Peltier G, Medgyesy P (2000) Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123:1337–1349

    Google Scholar 

  • Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH, Hu ZM (2003) Chloroplast transformation in oilseed rape. Transgenic 12:111–114

    CAS  PubMed  Google Scholar 

  • Huang F-C, Klaus S, Herz S, Zou Z, Koop H-U, Golds T (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol Genet Genomics 268:19–27

    Article  CAS  PubMed  Google Scholar 

  • Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh TA, Thanh ND, Lao NT, McGrath N, Peter SO, Horváth EM, Dix PJ, Medgyesy P (1999) Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events. Genetics 152:1111–1122

    CAS  PubMed  Google Scholar 

  • Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker to track plastid transformation in higher plants. Nat Biotechnol 17:910–915

    Article  CAS  PubMed  Google Scholar 

  • Klaus SMJ, Huang F-C, Golds TJ, Koop H-U (2004) Generation of marker-free plastid transformants using a transiently cointegrated selection gene. Nat Biotechnol 22:225–229

    Article  CAS  PubMed  Google Scholar 

  • Kofer W, Eibl C, Steinmüller K, Koop H-U (1998) Review: PEG-mediated plastid transformation in higher plants. In Vitro Cell Dev Biol- Plant 34:303–309

    CAS  Google Scholar 

  • Koop H-U, Steinmüller K, Wagner H, Rössler C, Eibl C, Sacher L (1996) Integration of foreign sequences into the tobacco plastome via polyethylene glycol-mediated protoplast transformation. Planta 199:193–201

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed Betaine Aldehyde Dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    Article  CAS  PubMed  Google Scholar 

  • Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5:164–172

    Google Scholar 

  • Maliga P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol 21:20–28

    Article  CAS  PubMed  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Physiol Plant Mol Biol 55:289–313

    CAS  Google Scholar 

  • McCabe PF, Timmons AM, Dix PJ (1989) A simple procedure for the isolation of streptomycin-resistant plants in Solanaceae. Mol Gen Genet 216:132–137

    Article  CAS  Google Scholar 

  • McGrath-Curran N, Shiel K, Nugent J, Kavanagh T, Dix P (2003) Chloroplast transformation of tobacco using non-bacterial selectable marker genes. In: 7th Int Congr Plant Mol Biol., Barcelona, Abstr S23–28. Available at: http://www.ispmb2003.com/

  • Menczel L, Nagy F, Kiss ZS, Maliga P (1981) Streptomycin resistant and sensitive somatic hybrids of Nicotiana tabacum and Nicotiana knightiana: correlation of resistance to N. tabacum plastids. Theor Appl Gen 59:191–195

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–498

    CAS  Google Scholar 

  • O’Neill C, Horváth GV, Horváth E, Dix PJ, Medgyesy P (1993) Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic systems. Plant J 3:729–738

    CAS  PubMed  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    Article  CAS  PubMed  Google Scholar 

  • Rumeau D, Bécuwe-Linka N, Beyly A, Carrier P, Cuiné S, Genty B, Medgyesy P, Horváth E, Peltier G (2004) Increased zinc content in transplastomic tobacco plants expressing a polyhistidine-tagged Rubisco large subunit. Plant Biotechnol J 2:389–399

    Article  CAS  Google Scholar 

  • Sikdar SR, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20–24

    Article  CAS  Google Scholar 

  • Sidorov VA, Kasten D, Pang S-Z, Hajdukiewicz PTJ, Staub JM, Nehra NS (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216

    CAS  PubMed  Google Scholar 

  • Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgene Res 12:115–122

    Article  CAS  Google Scholar 

  • Staub JM, Maliga P (1992) Long regions of homologous DNA are incorporated into the tobacco plastome by transformation. Plant Cell 4:39–45

    Article  CAS  PubMed  Google Scholar 

  • Sugita M, Svab Z, Maliga P, Sugiura M (1997) Targeted deletion of sprA from the tobacco plastome indicates that the encoded small RNA is not essential for pre-16S rRNA maturation in plastids. Mol Gen Genet 257:23–27

    Article  CAS  PubMed  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Peter Medgyesy (National University of Ireland, Maynooth) and Tony Kavanagh (Trinity College, Dublin) for making available their plasmids, and Roger Peeters for useful discussions. The work was carried out with the EU grant “Plastid transformation in crop plants” (BIO-97-2245)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Mordhorst.

Additional information

Communicated by H. Lörz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nugent, G.D., ten Have, M., van der Gulik, A. et al. Plastid transformants of tomato selected using mutations affecting ribosome structure. Plant Cell Rep 24, 341–349 (2005). https://doi.org/10.1007/s00299-005-0930-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-005-0930-3

Keywords

Navigation