Skip to main content

Transformation of the Plastid Genome in Tobacco: The Model System for Chloroplast Genome Engineering

  • Protocol
  • First Online:
Chloroplast Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2317))

Abstract

The protocol we report here is based on biolistic delivery of transforming DNA to tobacco leaves, selection of transplastomic clones by spectinomycin or kanamycin resistance and regeneration of plants with uniformly transformed plastid genomes. Because the plastid genome of Nicotiana tabacum derives from Nicotiana sylvestris, and the two genomes are highly conserved, vectors developed for N. tabacum can be used in N. sylvestris. The tissue culture responses of N. tabacum cv. Petit Havana and N. sylvestris accession TW137 are similar. Plastid transformation in a subset of N. tabacum cultivars and in Nicotiana benthamiana requires adjustment of the tissue culture protocol. We describe updated vectors targeting insertions in the unique and repeated regions of the plastid genome, vectors suitable for regulated gene expression by the engineered PPR10 RNA binding protein as well as systems for marker gene excision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng B-Y, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    Article  CAS  Google Scholar 

  2. Scharff LB, Bock R (2014) Synthetic biology in plastids. Plant J 78(5):783–798. https://doi.org/10.1111/tpj.12356

    Article  CAS  PubMed  Google Scholar 

  3. Shaver JM, Oldenburg DJ, Bendich AJ (2006) Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. Planta 224(1):72–82. https://doi.org/10.1007/s00425-005-0195-7

    Article  CAS  PubMed  Google Scholar 

  4. Lutz KA, Maliga P (2008) Plastid genomes in a regenerating tobacco shoot derive from a small number of copies selected through a stochastic process. Plant J 56:975–983. https://doi.org/10.1111/j.1365-313X.2008.03655.x

    Article  CAS  PubMed  Google Scholar 

  5. Maliga P, Nixon P (1998) Judging the homoplastomic state of plastid transformants. Trends Plant Sci 3:4–6

    Article  Google Scholar 

  6. Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci U S A 87:8526–8530

    Article  CAS  Google Scholar 

  7. Maliga P (2004) Plastid transformation in higher plants. Ann Rev Plant Biol 55:289–313. https://doi.org/10.1146/annurev.arplant.55.031903.141633

    Article  CAS  Google Scholar 

  8. Maliga P (2012) Plastid transformation in flowering plants. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria, vol 35. Advances in photosynthesis and photorespiration. Springer, Dordrecht, pp 393–414

    Google Scholar 

  9. Lutz KA, Svab Z, Maliga P (2006) Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system. Nat Protoc 1:900–910. https://doi.org/10.1038/nprot.2006.118

    Article  CAS  PubMed  Google Scholar 

  10. Lutz KA, Maliga P (2007) Transformation of the plastid genome to study RNA editing. Methods Enzymol 424:501–518. https://doi.org/10.1016/S0076-6879(07)24023-6

    Article  CAS  PubMed  Google Scholar 

  11. Maliga P, Svab Z (2011) Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics. In: Birchler JJ (ed) Plant chromosome engineering: methods and protocols, Methods in molecular biology, vol 701, vol 701. Springer Science+Business Media, LLC, New York, pp 37–50

    Chapter  Google Scholar 

  12. Bock R (2015) Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu Rev Plant Biol 66:211–241. https://doi.org/10.1146/annurev-arplant-050213-040212

    Article  CAS  PubMed  Google Scholar 

  13. Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9:540–553. https://doi.org/10.1111/j.1467-7652.2011.00604.x

    Article  CAS  PubMed  Google Scholar 

  14. Lutz KA, Maliga P (2007) Construction of marker-free transplastomic plants. Curr Opin Biotechnol 18:107–114. https://doi.org/10.1016/j.copbio.2007.02.003

    Article  CAS  PubMed  Google Scholar 

  15. Daniell H, Singh ND, Mason H, Streatfield SJ (2009) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14(12):669–679. https://doi.org/10.1016/j.tplants.2009.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fuentes P, Armarego-Marriott T, Bock R (2018) Plastid transformation and its application in metabolic engineering. Curr Opin Biotechnol 49:10–15. https://doi.org/10.1016/j.copbio.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  17. Lin MT, Occhialini A, Andralojc PJ, Devonshire J, Hines KM, Parry MA, Hanson MR (2014) Beta-Carboxysomal proteins assemble into highly organized structures in Nicotiana chloroplasts. Plant J 79(1):1–12. https://doi.org/10.1111/tpj.12536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin-Avila E, Lim YL, Birch R, Dirk LMA, Buck S, Rhodes T, Sharwood RE, Kapralov MV, Whitney SM (2020) Modifying plant photosynthesis and growth via simultaneous chloroplast transformation of Rubisco large and small subunits. Plant Cell 32(9):2898–2916. https://doi.org/10.1105/tpc.20.00288

    Article  CAS  PubMed  Google Scholar 

  19. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci U S A 90(3):913–917

    Article  CAS  Google Scholar 

  20. Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker to track plastid transformation in higher plants. Nat Biotechnol 17:910–915

    Article  CAS  Google Scholar 

  21. Yu Q, Tungsuchat-Huang T, Verma K, Radler MR, Maliga P (2020) Independent translation of ORFs in dicistronic operons, synthetic buiding blocks for polycistronic chloroplast gene expression. Plant J. 103:2318-2329. https://doi.org/10.1111/tpj.14864

  22. Yu Q, Lutz KA, Maliga P (2017) Efficient plastid transformation in Arabidopsis. Plant Physiol 175:186–193

    Article  CAS  Google Scholar 

  23. Yu Q, LaManna L, Kelly ME, Lutz KA, Maliga P (2019) New tools for engineering the Arabidopsis plastid genome. Plant Physiol 181:394–398

    Article  CAS  Google Scholar 

  24. Tungsuchat-Huang T, Slivinski KM, Sinagawa-Garcia SR, Maliga P (2011) Visual spectinomycin resistance gene for facile identification of transplastomic sectors in tobacco leaves. Plant Mol Biol 76:453–461

    Article  CAS  Google Scholar 

  25. Sinagawa-Garcia SR, Tungsuchat-Huang T, Paredes-Lopez O, Maliga P (2009) Next generation synthetic vectors for transformation of the plastid genome of higher plants. Plant Mol Biol 70(5):487–498. https://doi.org/10.1007/s11103-009-9486-x

    Article  CAS  PubMed  Google Scholar 

  26. Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241(1–2):49–56

    Article  CAS  Google Scholar 

  27. Svab Z, Maliga P (1991) Mutation proximal to the tRNA binding region of the Nicotiana plastid 16S rRNA confers resistance to spectinomycin. Mol Gen Genet 228(1–2):316–319

    Article  CAS  Google Scholar 

  28. Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Gen Genomics 275(4):367–373. https://doi.org/10.1007/s00438-005-0092-6

    Article  CAS  Google Scholar 

  29. Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18(11):1172–1176

    Article  CAS  Google Scholar 

  30. Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers draught tolerance. Mol Breed 11:1–13

    Article  CAS  Google Scholar 

  31. Yu LX, Gray BN, Rutzke CJ, Walsker LP, Wilson DB, Hanson MR (2007) Expression of thermostable microbial cellulases in the chloroplast of nicotine-free tobacco. J Biotechnol 131(3):362–369

    Article  CAS  Google Scholar 

  32. McCabe MS, Klaas M, Gonzalez-Rabade N, Poage M, Badillo-Corona JA, Zhou F, Karcher D, Bock R, Gray JC, Dix PJ (2008) Plastid transformation of high-biomass tobacco variety Maryland mammoth for production of human immunodeficiency virus type 1 (HIV-1) p24 antigen. Plant Biotechnol J 6(9):914–929

    Article  CAS  Google Scholar 

  33. O’Neill C, Horvath GV, Horvath E, Dix PJ, Medgyesy P (1993) Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J 3:729–738

    Article  Google Scholar 

  34. Davarpanah SJ, Jung SH, Kim YJ, Park YI, Min SR, Liu JR, Jeong WJ (2009) Stable plastid transformation in Nicotiana benthamiana. J Plant Biol 52(3):244–250. https://doi.org/10.1007/S12374-009-9023-0

    Article  CAS  Google Scholar 

  35. Murashige T, Skoog F (1962) A revised medium for the growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  36. Sidorov V, Menczel L, Maliga P (1981) Isoleucine-requiring Nicotian plant deficient in threonine deaminase. Nature 294(5836):87–88

    Article  CAS  Google Scholar 

  37. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    Article  CAS  Google Scholar 

  38. Gallagher SR (ed) (1992) GUS protocols: using the GUS gene as a reporter of gene expression. Academic, San Diego, CA

    Google Scholar 

  39. Corneille S, Lutz K, Svab Z, Maliga P (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J 72(2):171–178

    Article  Google Scholar 

  40. Corneille S, Lutz KA, Azhagiri AK, Maliga P (2003) Identification of functional lox sites in the plastid genome. Plant J 35:753–762

    Article  CAS  Google Scholar 

  41. Lutz K, Corneille S, Azhagiri AK, Svab Z, Maliga P (2004) A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant J 37:906–913

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the USDA Biotechnology Risk Assessment Research Grant Program Award No. 2005-33120-16524, 2008-03012, and 2010-2716, The USDA NIFA Foundational Program Award No. 2014-67013-21600 and NSF MCB Grant 1716102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pal Maliga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maliga, P., Tungsuchat-Huang, T., Lutz, K.A. (2021). Transformation of the Plastid Genome in Tobacco: The Model System for Chloroplast Genome Engineering. In: Maliga, P. (eds) Chloroplast Biotechnology. Methods in Molecular Biology, vol 2317. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1472-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1472-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1471-6

  • Online ISBN: 978-1-0716-1472-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics