Skip to main content
Log in

High efficiency inducible gene expression system based on activation of a chimeric transcription factor in transgenic pine

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Inducible gene expression systems are needed in functional genomics of tree species. A glucocorticoid-inducible gene expression system was established in a gymnosperm species Virginia pine (Pinus virginiana Mill.) through Agrobacterium tumefaciens-mediated genetic transformation. The results demonstrate that expression of the m-gfp5-ER reporter gene was tightly controlled and 0.1 μM of the glucocorticoid hormone triamcinolone was able to induce m-gfp5-ER expression in transgenic cells. Differential expression of gfp in transgenic cells induced by different concentrations of triamcinolone was observed and confirmed by Northern Blot analysis and by quantitative green fluorescence analyses with Laser Scanning Microscopy. In transgenic plantlets, triamcinolone was taken up efficiently by roots. Triamcinolone was able to induce m-gfp5-ER activity throughout the whole plant. The phenotype of transgenic plantlets was not affected 6 weeks after treatment with 0.1–10 μM triamcinolone. However, 6-week inductions with 100 μM triamcinolone caused growth retardation and developmental defects, as well as inhibition of root formation and elongation. With careful selection of transgenic lines, the inducible gene expression presented in this study could be a very valuable alternative for functional identification of novel genes in plants, especially in pine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aoyama T (1999) Glucocorticoid-inducible gene expression in plants. In: Reynolds PHS (eds) Inducible gene expression in plants. CAB, Wallingford, pp 43–59

    Google Scholar 

  • Aoyama T, Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11:605–612

    Article  PubMed  CAS  Google Scholar 

  • Bohner S, Lenk I, Rieping M, Herold M, Gatz C (1999) Transcriptional activator TGV mediates dexamethasone-inducible and tetracycline-inactivatable gene expression. Plant J 19:87–95

    Article  PubMed  CAS  Google Scholar 

  • Bruce W, Folkerts O, Garnaat C, Crasta O, Roth B, Bowen B (2000) Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P. Plant Cell 12:65–80

    Article  PubMed  CAS  Google Scholar 

  • Caddick MX, Greenland AJ, Jepson I, Krause KP, Qu N, Riddell KV, Salter MG, Schuch W, Sonnewald U, Tomsett AB (1998) An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nat Biotechnol 16:177–180

    Article  PubMed  CAS  Google Scholar 

  • Faiss M, Strnad M, Redig P, Dolezal K, Hanus J (1996) Chemically induced expression of the rolC-encoded β-glucosidase in transgenic tobacco plants and analysis of cytokinin metabolism: rolC does not hydrolyze endogenous cytokinin glucosides in planta. Plant J 10:33–46

    Article  CAS  Google Scholar 

  • Felenbok B (1991) The ethanol utilization regulon of Aspergillus nidulans: the alcA–alcR system as a tool for the expression of recombinant proteins. J Biotechnol 17:11–17

    Article  PubMed  CAS  Google Scholar 

  • Fisher CL, Pei GK (1997) Modification of a PCR-based site-directed mutagenesis method. Biotechniques 23:570–574

    PubMed  CAS  Google Scholar 

  • Friedrich L, Lawton KA, Ruess W, Masner W, Specker N (1996) A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J 10:61–70

    Article  CAS  Google Scholar 

  • Gälweiler L, Conlan RS, Mader P, Palme K, Moore I (2000) The DNA-binding activity of GAL4 is inhibited by methylation of the GAL4 binding site in plant chromatin. Plant J 23:143–157

    Article  PubMed  Google Scholar 

  • Gatz C (1997) Chemical control of gene expression. Ann Rev Plant Physiol Plant Mol Biol 48:89–108

    Article  CAS  Google Scholar 

  • Gatz C (1999) Use of the Tn10-encoded tetracycline repressor to control gene expression. In: Reynolds PHS (eds) Inducible gene expression in plants. CAB, Wallingford, pp 11–22

    Google Scholar 

  • Gatz C, Lenk I (1998) Promoters that respond to chemical inducers. Trends Plant Sci 3:352–358

    Article  Google Scholar 

  • Gatz C, Quail PH (1988) Tn10-encoded Tet repressor can regulate an operator-containing plant promoter. Proc Natl Acad Sci USA 85:1394–1397

    Article  PubMed  CAS  Google Scholar 

  • Gatz C, Frohberg C, Wendenburg R (1992) Stringent repression and homogeneous derepression by tetracycline of a modified CaMV35S promoter in intact transgenic tobacco plants. Plant J 2:397–404

    PubMed  CAS  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Bonin AL, Bujard H (1993) Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biochem Sci 18:471–475

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Freundlieb S, Bender G, Mueller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracycline in mammalian cells. Science 268:1766–1769

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    Article  PubMed  CAS  Google Scholar 

  • Hinrichs W, Kisker C, Düvel M, Müller A, Tovar K, Hillen W, Saenger W (1994) Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 264:418–420

    Article  PubMed  CAS  Google Scholar 

  • Kang HG, Fang YW, Singh KB (1999) A glucocorticoid-inducible transcription system causes severe growth defects in Arabidopsis and induces defense-related genes. Plant J 20:127–133

    Article  PubMed  CAS  Google Scholar 

  • Kunkel T, Niu QW, Chan YS, Chua NH (1999) Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nat Biotechnol 17:916–919

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AM, Schena M, Walbot W, Davis RW (1994) Epidermal cell fate determination in Arabidopsis: patterns defined by a steroidinducible regulator. Science 266:436–439

    Article  PubMed  CAS  Google Scholar 

  • Martinez A, Sparks C, Hart CA, Thompson J, Jepson I (1999) Ecdysone agonist inducible transcription in transgenic tobacco plants. Plant J 19:97–106

    Article  PubMed  CAS  Google Scholar 

  • McKenzie MJ, Mett V, Reynolds PHS, Jameson PE (1998) Controlled cytokinin production in transgenic tobacco using a copper-inducible promoter. Plant Physiol 116:969–977

    Article  PubMed  CAS  Google Scholar 

  • McNellis TW, Mudgett MB, Li K, Aoyama T, Horvath D, Chua NH, Staskawicz BJ (1998) Glucocorticoid-inducible expression of a bacterial avirulence gene in transgenic Arabidopsis induces hypersensitive cell death. Plant J 14:247–257

    Article  PubMed  CAS  Google Scholar 

  • Mett VL, Lochhead LP, Reynolds PHS (1993) Copper-controllable gene expression system for whole plants. Proc Natl Acad Sci USA 90:4567–4571

    Article  PubMed  CAS  Google Scholar 

  • Ouwerkerk PBF, de Kam RJ, Hodge JHC, Meijer AH (2001) Glucocorticoid-inducible gene expression in rice. Planta 213:370–378

    Article  PubMed  CAS  Google Scholar 

  • Padidam M (2003) Chemically regulated gene expression in plants. Curr Opin Plant Biol 6:169–177

    Article  PubMed  CAS  Google Scholar 

  • Picard D, Schena M, Yamamoto KR (1990) An inducible expression vector for both fission and budding yeast. Gene 86:257–261

    Article  PubMed  CAS  Google Scholar 

  • Reynolds PHS (ed) (1999) Inducible gene expression in plants. CAB, Wallingford

    Google Scholar 

  • Salter MG, Paine JA, Riddell KV, Jepson I, Greenland AJ, Caddick MX, Tomsett AB (1998) Characterization of the ethanol-inducible alc gene expression system for transgenic plants. Plant J 16:127–132

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schena M, Lloyd AM, Davis RW (1991) A steroid-inducible gene expression system for plant cells. Proc Natl Acad Sci USA 88:10421–10425

    Article  PubMed  CAS  Google Scholar 

  • Shockett P, Fillipantino M, Hellman H, Schatz D (1995) A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc Natl Acad Sci USA 92:6522–6526

    Article  PubMed  CAS  Google Scholar 

  • Stewart CN (2001) The utility of green fluorescent protein in transgenic plants. Plant Cell Rep 20:376–382

    Article  PubMed  CAS  Google Scholar 

  • Tang W (2000) Peroxidase activity of desiccation-tolerant loblolly pine somatic embryos. In Vitro Cell Dev Biol Plant 36:488–491

    Article  CAS  Google Scholar 

  • Tang W, Newton RJ (2003) Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep 22:1–15

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Newton RJ (2004) Regulated gene expression by glucocorticoids in cultured Virginia pine (Pinus virginiana Mill.) cells. J Exp Bot 55:1499–1508

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Luo XY, Samuels V (2004) Regulated gene expression with promoters responding to inducers. Plant Sci 166:827–834

    Article  CAS  Google Scholar 

  • Ward ER, Ryals JA, Miflin BJ (1993) Chemical regulation of transgene expression in plants. Plant Mol Biol 22:361–366

    Article  PubMed  CAS  Google Scholar 

  • Weinmann P, Gossen M, Hillen W, Bujard H, Gatz C (1994) A chimeric transactivator allows tetracycline-responsive gene expression in whole plants. Plant J 5:559–569

    Article  PubMed  CAS  Google Scholar 

  • Wirtz E, Clayton C (1995) Inducible gene expression in trypanosomes mediated by a prokaryotic repressor. Science 268:1179–1183

    Article  PubMed  CAS  Google Scholar 

  • Wright CF, Hamer DH, McKenney K (1988) Autoregulation of the yeast copper metallothionein gene depends on metal binding. J Biol Chem 263:1570–1574

    PubMed  CAS  Google Scholar 

  • Zuo J, Chua NH (2000) Chemical-inducible systems for regulated expression of plant genes. Curr Opin Biotech 11:146–151

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. P. B. F. Ouwerkerk and Dr. A. H. Meijer (Institute of Molecular Plant Sciences, Leiden University, Clusius Laboratory, The Netherlands) for the gift of the vector pINDEX3, to Dr. C. N. Stewart (Department of Plant Sciences, University of Tennessee Knoxville, TN 37996, USA) and Dr. J. Haseloff (Department of Plant Sciences, University of Cambridge, UK) for providing us with the m-gfp5-ER constructs, and to Dr. D. Weidner (The Flow Cytometry-Confocal Microscopy Core Facility, the Brody School of Medicine, East Carolina University, NC 27858, USA) for technical assistance with laser scanning microscopy for imaging and quantitative analysis of green fluorescence

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tang.

Additional information

Communicated by I.S. Chung

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, W., Newton, R.J. & Charles, T.M. High efficiency inducible gene expression system based on activation of a chimeric transcription factor in transgenic pine. Plant Cell Rep 24, 619–628 (2005). https://doi.org/10.1007/s00299-005-0009-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-005-0009-1

Keywords

Navigation