Skip to main content
Log in

VdOGDH is involved in energy metabolism and required for virulence of Verticillium dahliae

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Verticillium dahliae, a soil-borne fungus, can invade plant vascular tissue and cause Verticillium wilt. The enzyme α-oxoglutarate dehydrogenase (OGDH), catalyzing the oxidation of α-oxoglutarate in the tricarboxylic acid cycle (TCA), is vital for energy metabolism in the fungi. Here, we identified the OGDH gene in V. dahliae (VdOGDH, VDAG_10018) and investigated its function in virulence by generating gene deletion mutants (ΔVdOGDH) and complementary mutants (ΔVdOGDH-C). When the ΔVdOGDH mutants were supplemented with different carbon sources, vegetative growth on Czapek Dox medium was significantly impaired, suggesting that VdOGDH is crucial for vegetative growth and carbon utilization. Conidia of the ΔVdOGDH mutants were atypically rounded or spherical, and hyphae were irregularly branched and lacked typical whorled branches. Mutants ΔVdOGDH-1 and ΔVdOGDH-2 were highly sensitive to H2O2 in the medium plates and had higher intracellular ROS levels. ΔVdOGDH mutants also had elevated expression of oxidative response-related genes, indicating that VdOGDH is involved in response to oxidative stress. In addition, the disruption of VdOGDH caused a significant increase in the expression of energy metabolism-related genes VdICL, VdICDH, VdMDH, and VdPDH and melanin-related genes Vayg1, VdSCD, VdLAC, VT4HR, and VaflM in the ΔVdOGDH mutants; thus, VdOGDH is also important for energy metabolism and melanin accumulation. Cotton plants inoculated with ΔVdOGDH mutants exhibited mild leaf chlorosis and the disease index was lower compared with wild type and ΔVdOGDH-C strains. These results together show that VdOGDH involved in energy metabolism of V. dahliae, is also essential for full virulence by regulating multiple fungal developmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgements

This research was supported by a grant from the National Natural Science Foundation of China (31701861 and 31772244), the special fund for agro-scientific research in the public interest (201503109), and the Agricultural Science and Technology Innovation Program of CAAS, and the Fundamental Research Funds for Central Non-profit Scientific Institution (Y2017JC57).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Guo or Hongmei Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Communicated by M. Kupiec.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Su, X., Lu, G. et al. VdOGDH is involved in energy metabolism and required for virulence of Verticillium dahliae. Curr Genet 66, 345–359 (2020). https://doi.org/10.1007/s00294-019-01025-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-019-01025-2

Keywords

Navigation