Skip to main content
Log in

FreB is involved in the ferric metabolism and multiple pathogenicity-related traits of Verticillium dahliae

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Ferric reductases are integral membrane proteins involved in the reduction of environmental ferric iron into the biologically available ferrous iron. In the most overwhelming phytopathogenic fungus, Verticillium dahliae, these ferric reductase are not studied in details. In this study we explored the role of FreB gene (VDAG_06616) in the ferric reduction and virulence of V. dahliae by generating the knockout mutants (ΔFreB) and complementary strains (ΔFreB-C) using protoplast transformation. When cultured on media supplemented with FeSO4, FeCl3 and no iron, ΔFreB exhibited significantly reduced growth and spore production especially on media with no iron. Transmembrane ferric reductase activity of ΔFreB was decreased up to 50% than wild type strains (Vd-wt). The activity was fully restored in ΔFreB-C. Meanwhile, the expression levels of other related genes (Frect-4, Frect-5, Frect-6 and Met) were obviously increased in ΔFreB. Compared with the Vd-wt and ΔFreB-C, ΔFreB-1 and ΔFreB-2 were impaired in colony diameter and spore number on different carbon sources (starch, sucrose, galactose and xylose). ΔFreB-1 and ΔFreB-2 were also highly sensitive to oxidative stress as revealed by the plate diffusion assay when 100 µM H2O2 was applied to the fungal culture. When Nicotiana benthamiana plants were inoculated, ΔFreB exhibited less disease symptoms than Vd-wt and ΔFreB-C. In conclusion, the present findings not only indicate that FreB mediates the ferric metabolism and is required for the full virulence in V. dahliae, but would also accelerate future investigation to uncover the pathogenic mechanism of this fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achard MES, Chen KW, Sweet MJ, Watts RE, Schroder K, Schembri MA, Mcewan AG (2013) An antioxidant role for catecholate siderophores in Salmonella. Biochem J 454:543–549

    Article  CAS  PubMed  Google Scholar 

  • Blatzer M, Binder U, Haas H (2011) The metalloreductase FreB is involved in adaptation of Aspergillus fumigatus to iron starvation. Fungal Genet Biol 48:1027–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadieux B, Lian T, Hu G, Wang J, Biondo C, Teti G, Liu V, Murphy MEP, Creagh AL, Kronstad JW (2013) The mannoprotein cig1 supports iron acquisition from heme and virulence in the pathogenic fungus Cryptococcus neoformans. J Infect Dis 207:1339–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Noble SM (2012) Post-transcriptional regulation of the Sef1 transcription factor controls the virulence of Candida albicans in its mammalian host. PLoS Pathog 8:e1002956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LH, Yang SL, Chung KR (2014) Resistance to oxidative stress via regulating siderophore-mediated iron acquisition by the citrus fungal pathogen Alternaria alternata. Microbiology 160:970–979

    Article  CAS  PubMed  Google Scholar 

  • Chen JY, Xiao HL, Gui YJ, Zhang DD, Li L, Bao YM, Dai XF (2016) Characterization of the Verticillium dahliae exoproteome involves in pathogenicity from cotton-containing medium. Front Microbiol 7:1709–1720

    PubMed  PubMed Central  Google Scholar 

  • Dancis A, Klausner RD, Hinnebusch AG, Barriocanal JG (1990) Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 10:2294–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisendle M, Schrettl M, Kragl C, Muller D, Illmer P, Haas H (2006) The intracellular siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in Aspergillus nidulans. Eukaryot Cell 5:1596–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher MC, Henk D, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  CAS  PubMed  Google Scholar 

  • Fradin EF, Thomma BPHJ (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7:71–86

    Article  CAS  PubMed  Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815–820

  • Han Q, Wu F, Wang X, Qi H, Shi L, Ren A, Liu Q, Zhao M, Tang C (2015) The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signaling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity. Environ Microbil 17:1166–1188

    Article  CAS  Google Scholar 

  • Hillmann F, Shekhova E, Kniemeyer O (2015) Insights into the cellular responses to hypoxia in filamentous fungi. Curr Genet 61:441–455

    Article  CAS  PubMed  Google Scholar 

  • Homann OR, Dea J, Noble SM, Johnson AD (2009) A phenotypic profile of the Candida albicans regulatory network. PLoS Genet 5:e1000783

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoppenau CE, Tran VT, Kusch H, Aßhauer KP, Landesfeind M, Meinicke P, Popova B, Braus-Stromeyer SA, Braus GH (2014) Verticillium dahliae VdTHI4, involved in thiazole biosynthesis, stress response and DNA repair functions, is required for vascular disease induction in tomato. Environ Exp Bot 108:14–22

    Article  CAS  Google Scholar 

  • Huang LS, Lin KC (2001) Detection of iron species using inductively coupled plasma mass spectrometry under cold plasma temperature conditions. Spectrochim Acta Part B At Spectrosc 56:123–128

    Article  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    Article  CAS  PubMed  Google Scholar 

  • Klimes A, Dobinson KF (2006) A hydrophobin gene, VDH1, is involved in microsclerotial development and spore viability in the plant pathogen Verticillium dahliae. Fungal Genet Biol 43:283–294

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Lee HS, Song JY, Jung JY, Reinbothe S, Park Y, Lee SY, Pai HS (2013) Cell growth defect factor1/chaperone-like protein of POR1 plays a role in stabilization of light-dependent protochlorophyllide oxidoreductase in Nicotiana benthamiana and Arabidopsis. Plant Cell 25:3944–3960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SY, Chen JY, Wang JL, Li L, Xiao HL, Adam SM, Dai XF (2013) Molecular characterization and functional analysis of a specific secreted protein from highly virulent defoliating Verticillium dahliae. Gene 529:307–316

    Article  CAS  PubMed  Google Scholar 

  • McCotter SW, Horianopoulos LC, Kronstad JW (2016) Regulation of the fungal secretome. Curr Genet 62:533–545

    Article  CAS  PubMed  Google Scholar 

  • Meneghini R (1997) Iron homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med 23:783–792

    Article  CAS  PubMed  Google Scholar 

  • Moore MM (2013) The crucial role of iron uptake in Aspergillus fumigatus virulence. Curr Opin Microbiol 16:692–699

    Article  CAS  PubMed  Google Scholar 

  • Morrissey JA, Williams PH, Cashmore AM (1996) Candida albicans has a cell-associated ferric-reductase activity which is regulated in response to levels of iron and copper. Microbiology 142:485–492

    Article  CAS  PubMed  Google Scholar 

  • Nyhus KJ, Wilborn AT, Jacobson ES (1997) Ferric iron reduction by Cryptococcus neoformans. Infect Immun 65:434–438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Pegg GF, Brady BL (2002) Verticillium Wilts. CABI Pulishing, New York

    Book  Google Scholar 

  • Pennisi E (2010) Armed and dangerous. Science 327:804–805

    Article  CAS  PubMed  Google Scholar 

  • Pepper SE, Borkowski M, Richmann MK, Reed DT (2010) Determination of ferrous and ferric iron in aqueous biological solutions. Anal Chim Acta 663:172–177

    Article  CAS  PubMed  Google Scholar 

  • Philpott CC (2006) Iron uptake in fungi: a system for every source. Biochim Biophys Acta Mol Cell Res 1763:636–645

    Article  CAS  Google Scholar 

  • Qi X, Su X, Guo H, Qi J, Cheng H (2016) VdThit, a thiamine transport protein, is required for pathogenicity of the vascular pathogen Verticillium dahliae. Mol Plant Microbe Interact 29:545–559

    Article  CAS  PubMed  Google Scholar 

  • Rehman L, Su X, Guo H, Qi X, Cheng H (2016) Protoplast transformation as a potential platform for exploring gene function in Verticillium dahliae. BMC Biotechnol 16:57–65

    Article  PubMed  PubMed Central  Google Scholar 

  • Saikia S, Oliveira D, Hu G, Kronstad J (2014) Role of ferric reductases in iron acquisition and virulence in the fungal pathogen Cryptococcus neoformans. Infect Immun 82:839–850

    Article  PubMed  PubMed Central  Google Scholar 

  • Su X, Rehman L, Guo H, Li X, Zhang R, Cheng H (2017) AAC as a potential target gene to control Verticillium dahliae. Genes (Basel) 8:25–41

    Article  Google Scholar 

  • Sutak R, Lesuisse E, Tachezy J, Richardson DR (2008) Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends Microbiol 16:261–268

    Article  CAS  PubMed  Google Scholar 

  • Tran V, Braus-Stromeyer SA, Kusch H, Reusche M, Kaever A, Kuhn A, Valerius O, Landesfeind M, Aßhauer K, Tech M, Hoff K, Pena-Centeno T, Stanke M, Lipka V, Braus GH (2014) Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots. New Phytol 202:565–581

    Article  CAS  PubMed  Google Scholar 

  • Tzima AK, Paplomatas EJ, Tsitsigiannis DI, Kang S (2012) The G protein B subunit controls virulence and multiple growth- and development-related traits in Verticillium dahliae. Fungal Genet Biol 49:271–283

    Article  CAS  PubMed  Google Scholar 

  • Wang HM, Lin ZX, Zhang XL, Chen W, Guo XP, Nie YC, Li YH (2008) Mapping and quantitative trait loci analysis of Verticillium wilt resistance genes in cotton. J Integr Plant Biol 50:174–182

    Article  PubMed  Google Scholar 

  • Wang Y, Liang C, Wu S, Zhang X, Tang J, Jian G, Jiao G, Li F, Chu C (2016) Significant improvement of cotton Verticillium wilt resistance by manipulating the expression of gastrodia antifungal proteins. Mol Plant 9:1436–1439

    Article  CAS  PubMed  Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764

    Article  CAS  PubMed  Google Scholar 

  • Xiong D, Wang Y, Tang C, Fang Y, Zou J, Tian C (2015) VdCrz1 is involved in microsclerotia formation and required for full virulence in Verticillium dahliae. Fungal Genet Biol 82:201–212

    Article  CAS  PubMed  Google Scholar 

  • Xiong D, Wang Y, Tian L, Tian C (2016) MADS-Box transcription factor VdMcm1 regulates conidiation, microsclerotia formation, pathogenicity, and secondary metabolism of Verticillium dahliae. Front Microbiol 7:1192–1206

    PubMed  PubMed Central  Google Scholar 

  • Xu N, Qian K, Dong Y, Chen Y, Yu Q, Zhang B, Xing L, Li M (2014) Novel role of the Candida albicans ferric reductase gene CFL1 in iron acquisition, oxidative stress tolerance, morphogenesis and virulence. Res Microbiol 165:1–10

    Article  Google Scholar 

  • Yun CW, Bauler M, Moore RE, Klebba PE, Philpott CC (2001) The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. J Biol Chem 276:10218–10223

    Article  CAS  PubMed  Google Scholar 

  • Zhang YL, Li ZF, Feng ZL, Feng HJ, Zhao LH, Shi YQ, Hu XP, Zhu HQ (2015) Isolation and functional analysis of the pathogenicity-related gene VdPR3 from Verticillium dahliae on cotton. Curr Genet 61:555–566

    Article  CAS  PubMed  Google Scholar 

  • Zhang DD, Wang XY, Chen JY, Kong ZQ, Gui YJ, Li NY, Bao YM, Dai XF (2016a) Identification and characterization of a pathogenicity-related gene VdCYP1 from Verticillium dahliae. Sci Rep 6:27979–27991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Jin Y, Zhao JH, Gao F, Zhou BJ, Fang YY, Guo HS (2016b) Host-induced gene silencing of target gene in fungal cells confers effective resistance to cotton wilt disease pathogen Verticillium dahliae. Mol Plant 9:939–942

    Article  CAS  PubMed  Google Scholar 

  • Zhang WQ, Gui YJ, Short DPG, Li TG, Zhang DD, Zhou L, Liu C, Bao YM, Subbarao KV, Chen JY, Dai XF (2017) Verticillium dahliae transcription factor VdFTF1 regulates the expression of multiple secreted virulence factors and is required for full virulence in cotton. Mol Plant Pathol. https://doi.org/10.1111/mpp.12569

    Google Scholar 

  • Zhao YL, Zhou TT, Duo HS (2016) Hyphodium-specific VdNoxB/VdPls 1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae. PLoS Pathog 12:e1005793

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China (31772244), the National Nonprofit Industry Research (201503109) and the Agricultural Science and Technology Innovation Program of CAAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by M. Kupiec.

Latifur Rehman and Xiaofeng Su contributed equally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, L., Su, X., Li, X. et al. FreB is involved in the ferric metabolism and multiple pathogenicity-related traits of Verticillium dahliae . Curr Genet 64, 645–659 (2018). https://doi.org/10.1007/s00294-017-0780-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-017-0780-x

Keywords

Navigation