Skip to main content
Log in

Cotton gene expression profiles in resistant Gossypium hirsutum cv. Zhongzhimian KV1 responding to Verticillium dahliae strain V991 infection

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Verticillium wilt of cotton (Gossypium hirsutum) is a widespread and destructive disease that is caused by the soil-borne fungus pathogen Verticillium dahliae (V. dahliae). To study the molecular mechanism in wilt tolerance, suppression subtractive hybridization (SSH) and dot blot techniques were used to identify the specifically expressed genes in a superior wilt-resistant cotton cultivar (G. hirsutum cv. Zhongzhimian KV1) after inoculation with pathogen. cDNAs from the root tissues of Zhongzhimian KV1 inoculated with V. dahliae strain V991 or water mock were used to construct the libraries that contain 4800 clones. Based on the results from dot blot analysis, 147 clones were clearly induced by V. dahliae and selected from the SSH libraries for sequencing. A total of 92 up-regulated and 7 down-regulated non-redundant expressed sequences tags (ESTs) were identified as disease responsive genes and classified into 9 functional groups. Two important clues regarding wilt-resistant G. hirsutum were obtained from this study. One was Bet v 1 family; the other was UbI gene family that may play an important role in the defense reaction against Verticillium wilt. The result from real-time quantitative reverse transcription polymerase chain reaction showed that these genes were activated quickly and transiently after inoculation with V. dahliae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bell AA (2001) Stem and root diseases, Verticillium wilt. In: Kirkpatrick TL, Rothrock CS (eds) Compendium of cotton disease. APS Press, The American Phytopathological Society, St. Paul, pp 28–31

    Google Scholar 

  2. Ma C (2007) Verticillium wilt. In: Ma C (ed) Fusarium wilt and Verticillium wilt of cotton. China Agriculture Press, Beijing, pp 61–70

    Google Scholar 

  3. Joaquim TR, Rowe RC (1990) Reassessment of vegetative compatibility relationships among strains of Verticillium dahliae using nitrate-nonutilizing mutants. Phytopathology 80:1160–1166

    Article  Google Scholar 

  4. Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV (2009) Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol 47:39–62

    Article  PubMed  CAS  Google Scholar 

  5. Jian GL, Lu MG (2004) Study on the method of breeding cotton for resistance to Verticillium dahliae. Acta Phytopathol Sinica 34:70–74

    Google Scholar 

  6. Cai Y, He X, Mo J et al (2009) Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: a review. Afr J Biotechnol 8(25):7363–7372

    CAS  Google Scholar 

  7. Dangl JL, Jones DGJ (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  8. Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  PubMed  CAS  Google Scholar 

  9. Verhage A, Van Wees SC, Pieterse CM (2010) Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol 154:536–540

    Article  PubMed  CAS  Google Scholar 

  10. Caillot S, Rat S, Tavernier ML et al (2012) Native and sulfated oligoglucuronans as elicitors of defence-related responses inducing protection against Botrytis cinerea of Vitis vinifera. Carbohydr Polym 87:1728–1736

    Article  CAS  Google Scholar 

  11. Kombrink E, Somssich IE (1995) Defense responses of plants to pathogens. Adv Bot Res 21:1–34

    Article  CAS  Google Scholar 

  12. Dubery IA, Smit F (1994) Phenylalanine ammonia-lyase from cotton (Gossypium hirsutum) hypocotyls: properties of the enzyme induced by a Verticillium dahliae phytotoxin. Biochim Biophys Acta 1207:24–30

    Article  PubMed  CAS  Google Scholar 

  13. Smit F, Dubery IA (1997) Cell wall reinforcement in cotton hypocotyls in response to a V. dahliae elicitor. Phytochemistry 44:811–815

    Article  CAS  Google Scholar 

  14. Dubery IA, Slater V (1997) Induced defence responses in cotton leaf disks by elicitors from Verticillium dahliae. Phytochemistry 44:1429–1434

    Article  CAS  Google Scholar 

  15. Hill MK, Lyon KJ, Lyon BR (1999) Identification of disease response genes expressed in Gossypium hirsutum upon infection with the wilt pathogen Verticillium dahliae. Plant Mol Biol 40:289–296

    Article  PubMed  CAS  Google Scholar 

  16. Mcfadden HG, Chapple R, De Feyter R et al (2001) Expression of pathogenesis-related genes in cotton stems in response to infection by Verticillium dahliae. Physiol Mol Plant Pathol 58:119–131

    Article  CAS  Google Scholar 

  17. Zhou XJ, Lu S, Xu YH et al (2002) A cotton cDNA (GaPR-10) encoding a pathogenesis-related 10 protein with in vitro ribonuclease activity. Plant Sci 162:629–636

    Article  CAS  Google Scholar 

  18. Munis MFH, Tu L, Deng F et al (2010) A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco. Biochem Biophys Res Commun 393:38–44

    Article  PubMed  CAS  Google Scholar 

  19. Chen JY, Dai XF (2010) Cloning and characterization of the Gossypium hirsutum major latex protein gene and functional analysis in Arabidopsis thaliana. Planta 231:861–873

    Article  PubMed  CAS  Google Scholar 

  20. Joost O, Bianchini G, Bell AA et al (1995) Differential induction of 3-hydroxy-3-methylglutaryl CoA reductase in two cotton species following inoculation with Verticillium. MPMI 8:880–885

    Article  PubMed  CAS  Google Scholar 

  21. Chen XY, Chen Y, Heistein P, Davisson VJ (1995) Cloning, expression, and characterization of (+)-δ-cadinene synthase: a catalyst for cotton phytoalexin biosynthesis. Arch Biochem Biophys 324:255–266

    Article  PubMed  CAS  Google Scholar 

  22. Qin J, Zhao J, Zuo K et al (2004) Isolation and characterization of an ERF-like gene from Gossypium barbadense. Plant Sci 167:1383–1389

    Article  CAS  Google Scholar 

  23. Qu ZL, Wang HY, Xia GX (2005) GhHb1: a nonsymbiotic hemoglobin gene of cotton responsive to infection by Verticillium dahliae. Biochim Biophys Acta (BBA) 1730:103–113

    Article  CAS  Google Scholar 

  24. Gao XQ, Wheeler T, Li ZH et al (2011) Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J 66:293–305

    Article  PubMed  CAS  Google Scholar 

  25. Diatchenko L, Lau YF, Campbell AP et al (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  26. Wang LM, Shi LY (1999) Identification of defoliating strains of Verticillium dahliae from cotton in north China. Acta Phytopathol Sinica 29:181–189

    Article  Google Scholar 

  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  28. Zhu LF, Tu LL, Zeng FC et al (2005) An improved simple protocol for isolation of high quality RNA from Gossypium spp. Suitable for cDNA library construction. Acta Agron Sinica 31:1657–1659

    CAS  Google Scholar 

  29. Zhu LF, Tu LL, Zhang XL et al (2005) Construction and analysis of SSH library of Gossypium barbadense upon infection with Verticillium dahliae. Acta Genet Sinica 32:528–532

    CAS  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  31. Somssich IE, Schmelzer E, Bollmann J, Hahlbrock K (1986) Rapid activation by fungal elicitor of genes encoding “pathogenesis-related” proteins in cultured parsley cells. Proc Natl Acad Sci USA 83:2427–2430

    Article  PubMed  CAS  Google Scholar 

  32. Garber RH, Houston BR (1966) Penetration and development of Verticillium albo-atrum in the cotton plant. Phytopathology 56:1121–1126

    Google Scholar 

  33. Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    Article  PubMed  CAS  Google Scholar 

  34. Lawrence SD, Novak NG (2006) Expression of poplar chitinase in tomato leads to inhibition of development in Colorado potato beetle. Biotechnol Lett 28:593–599

    Article  PubMed  CAS  Google Scholar 

  35. Breiteneder H, Pettenburger K, Bito A et al (1989) The gene coding for the major birch pollen allergen BetvI, is highly homologous to a pea disease resistance response gene. EMBO J 8:1935–1938

    PubMed  CAS  Google Scholar 

  36. Breiteneder H, Hoffmann-Sommergruber K, O’Riordain G et al (1995) Molecular characterization of Api g 1, the major allergen of celery (Apium graveolens), and its immunological and structural relationships to a group of 17-kDa tree pollen allergens. Eur J Biochem 233:484–489

    Article  PubMed  CAS  Google Scholar 

  37. Matton DP, Brisson N (1989) Cloning, expression, and sequence conservation of pathogenesis-related gene transcripts of potato. Mol Plant Microbe Interact 2:325–331

    Article  PubMed  CAS  Google Scholar 

  38. Barratt DHP, Clark JA (1991) Proteins arising during the late stages of embryogenesis in Pisum sativum L. Planta 184:14–23

    Article  CAS  Google Scholar 

  39. Crowell DN, John ME, Russell D, Amasino RM (1992) Characterization of a stress-induced, developmentally regulated gene family from soybean. Plant Mol Biol 18:459–466

    Article  PubMed  CAS  Google Scholar 

  40. Liu JJ, Ekramoddoullah AKM (2006) The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68:3–13

    Article  CAS  Google Scholar 

  41. Pasternak O, Bujacz GD, Fujimoto Y, Hashimoto Y et al (2006) Crystal structure of Vigna radiata cytokinin-specific binding protein in complex with zeatin. Plant Cell 18:2622–2634

    Article  PubMed  Google Scholar 

  42. Hashimoto M, Kisseleva L, Sawa S, Furukawa T et al (2004) A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiol 45:550–559

    Article  PubMed  CAS  Google Scholar 

  43. Ruperti B, Bonghi C, Ziliotto F, Pagni S et al (2002) Characterization of a major latex protein (MLP) gene down-regulated by ethylene during peach fruitlet abscission. Plant Sci 163:265–272

    Article  CAS  Google Scholar 

  44. Wang FX, Ma YP, Yang CL, Zhao PM et al (2011) Proteomic analysis of the sea-island cotton roots infected by wilt pathogen Verticillium dahliae. Proteomics 11:4296–4309

    Article  PubMed  CAS  Google Scholar 

  45. Zeng LR, Vega-Sánchez ME, Zhu T, Wang GL (2006) Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Res 16:413–426

    Article  PubMed  CAS  Google Scholar 

  46. Lee DH, Choi HW, Hwang BK (2011) The pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylic acid-dependent defense response. Plant Physiol 156:2011–2025

    Article  PubMed  CAS  Google Scholar 

  47. Oliver O, Wolfgang B (2000) Characterization and oxidative in vitro cross-linking of an extension-like protein and a proline-rich protein purified from chickpea cell walls. Phytochemisty 53:1–5

    Article  Google Scholar 

  48. Yang CQ, Lu S, Mao YB et al (2010) Characterization of two NADPH: cytochrome P450 reductases from cotton (Gossypium hirsutum). Phytochemistry 71:27–35

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Wei Zhang, Gui-Liang Jian or Shi-Chang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, WW., Jian, GL., Jiang, TF. et al. Cotton gene expression profiles in resistant Gossypium hirsutum cv. Zhongzhimian KV1 responding to Verticillium dahliae strain V991 infection. Mol Biol Rep 39, 9765–9774 (2012). https://doi.org/10.1007/s11033-012-1842-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1842-2

Keywords

Navigation