Al-Deib AA, Mahdi AA, Lloyd RG (1996) Modulation of recombination and DNA repair by the RecG and PriA helicases of Escherichia coli K-12. J Bacteriol 178:6782–6789
CAS
PubMed
PubMed Central
Google Scholar
Atkinson J, Gupta MK, Rudolph CJ et al (2011) Localization of an accessory helicase at the replisome is critical in sustaining efficient genome duplication. Nucleic Acids Res 39:949–957. doi:10.1093/nar/gkq889
CAS
PubMed
Article
Google Scholar
Azeroglu B, Mawer JSP, Cockram CA et al (2016) RecG directs DNA synthesis during double-strand break repair. PLoS Genet 12:e1005799. doi:10.1371/journal.pgen.1005799
PubMed
PubMed Central
Article
CAS
Google Scholar
Baharoglu Z, Bradley AS, Le Masson M et al (2008) ruvA mutants that resolve Holliday junctions but do not reverse replication forks. PLoS Genet 4:e1000012. doi:10.1371/journal.pgen.1000012
PubMed
PubMed Central
Article
CAS
Google Scholar
Benson F, Collier S, Lloyd RG (1991) Evidence of abortive recombination in ruv mutants of Escherichia coli K12. Mol Gen Genet MGG 225:266–272
CAS
PubMed
Article
Google Scholar
Bianco PR (2015) I came to a fork in the DNA and there was RecG. Prog Biophys Mol Biol 117:166–173. doi:10.1016/j.pbiomolbio.2015.01.001
CAS
PubMed
PubMed Central
Article
Google Scholar
Boubakri H, de Septenville AL, Viguera E, Michel B (2010) The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J 29:145–157. doi:10.1038/emboj.2009.308
CAS
PubMed
Article
Google Scholar
Briggs GS, Mahdi AA, Weller GR et al (2004) Interplay between DNA replication, recombination and repair based on the structure of RecG helicase. Philos Trans R Soc Lond B 359:49–59. doi:10.1098/rstb.2003.1364
CAS
Article
Google Scholar
Cooper DL, Boyle DC, Lovett ST (2015) Genetic analysis of Escherichia coli RadA: functional motifs and genetic interactions. Mol Microbiol 95:769–779. doi:10.1111/mmi.12899
CAS
PubMed
PubMed Central
Article
Google Scholar
Courcelle CT, Belle JJ, Courcelle J (2005) Nucleotide excision repair or polymerase V-mediated lesion bypass can act to restore UV-arrested replication forks in Escherichia coli. J Bacteriol 187:6953–6961. doi:10.1128/JB.187.20.6953-6961.2005
CAS
PubMed
PubMed Central
Article
Google Scholar
Courcelle CT, Chow K-H, Casey A, Courcelle J (2006) Nascent DNA processing by RecJ favors lesion repair over translesion synthesis at arrested replication forks in Escherichia coli. Proc Natl Acad Sci USA 103:9154–9159. doi:10.1073/pnas.0600785103
CAS
PubMed
PubMed Central
Article
Google Scholar
de Massy B, Fayet O, Kogoma T (1984) Multiple origin usage for DNA replication in sdrA(rnh) mutants of Escherichia coli K-12. Initiation in the absence of oriC. J Mol Biol 178:227–236
PubMed
Article
Google Scholar
De Septenville AL, Duigou S, Boubakri H, Michel B (2012) Replication fork reversal after replication-transcription collision. PLoS Genet 8:e1002622. doi:10.1371/journal.pgen.1002622
PubMed
PubMed Central
Article
CAS
Google Scholar
Dimude JU, Stockum A, Midgley-Smith SL et al (2015) The consequences of replicating in the wrong orientation: bacterial chromosome duplication without an active replication origin. MBio. doi:10.1128/mBio.01294-15
PubMed
PubMed Central
Google Scholar
Donaldson JR, Courcelle CT, Courcelle J (2004) RuvAB and RecG are not essential for the recovery of DNA synthesis following UV-induced DNA damage in Escherichia coli. Genetics 166:1631–1640. doi:10.1534/genetics.166.4.1631
CAS
PubMed
PubMed Central
Article
Google Scholar
Ede C, Rudolph CJ, Lehmann S et al (2011) Budding yeast Mph1 promotes sister chromatid interactions by a mechanism involving strand invasion. DNA Repair 10:45–55. doi:10.1016/j.dnarep.2010.09.009
CAS
PubMed
Article
Google Scholar
Florés M-J, Sanchez N, Michel B (2005) A fork-clearing role for UvrD. Mol Microbiol 57:1664–1675. doi:10.1111/j.1365-2958.2005.04753.x
PubMed
Article
CAS
Google Scholar
Fuchs RP, Fujii S (2013) Translesion DNA synthesis and mutagenesis in prokaryotes. Cold Spring Harb Perspect Biol 5:a012682. doi:10.1101/cshperspect.a012682
PubMed
PubMed Central
Article
CAS
Google Scholar
Fujiwara Y, Tatsumi M (1976) Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: caffeine sensitive and caffeine resistant mechanisms. Mutat Res 37:91–110
CAS
PubMed
Article
Google Scholar
Fukuoh A, Iwasaki H, Ishioka K, Shinagawa H (1997) ATP-dependent resolution of R-loops at the ColE1 replication origin by Escherichia coli RecG protein, a Holliday junction-specific helicase. EMBO J 16:203–209. doi:10.1093/emboj/16.1.203
CAS
PubMed
PubMed Central
Article
Google Scholar
Gabbai CB, Yeeles JTP, Marians KJ (2014) Replisome-mediated translesion synthesis and leading strand template lesion skipping are competing bypass mechanisms. J Biol Chem 289:32811–32823. doi:10.1074/jbc.M114.613257
CAS
PubMed
PubMed Central
Article
Google Scholar
Goodman MF, Woodgate R (2013) Translesion DNA polymerases. Cold Spring Harb Perspect Biol 5:a010363. doi:10.1101/cshperspect.a010363
PubMed
PubMed Central
Article
CAS
Google Scholar
Gorbalenya AE, Koonin EV (1993) Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 3:419–429. doi:10.1016/S0959-440X(05)80116-2
CAS
Article
Google Scholar
Gowrishankar J (2015) End of the beginning: elongation and termination features of alternative modes of chromosomal replication initiation in bacteria. PLoS Genet 11:e1004909. doi:10.1371/journal.pgen.1004909
PubMed
PubMed Central
Article
CAS
Google Scholar
Gregg AV, McGlynn P, Jaktaji RP, Lloyd RG (2002) Direct rescue of stalled DNA replication forks via the combined action of PriA and RecG helicase activities. Mol Cell 9:241–251
CAS
PubMed
Article
Google Scholar
Gupta S, Yeeles JTP, Marians KJ (2014) Regression of replication forks stalled by leading-strand template damage: I. Both RecG and RuvAB catalyze regression, but RuvC cleaves the holliday junctions formed by RecG preferentially. J Biol Chem 289:28376–28387. doi:10.1074/jbc.M114.587881
CAS
PubMed
PubMed Central
Article
Google Scholar
Guy CP, Atkinson J, Gupta MK et al (2009) Rep provides a second motor at the replisome to promote duplication of protein-bound DNA. Mol Cell 36:654–666. doi:10.1016/j.molcel.2009.11.009
CAS
PubMed
PubMed Central
Article
Google Scholar
Hanawalt P, Setlow R (1960) Effect of monochromatic ultraviolet light on macromolecular synthesis in Escherichia coli. Biochim Biophys Acta 41:283–294
CAS
PubMed
Article
Google Scholar
Heller RC, Marians KJ (2005) The disposition of nascent strands at stalled replication forks dictates the pathway of replisome loading during restart. Mol Cell 17:733–743. doi:10.1016/j.molcel.2005.01.019
CAS
PubMed
Article
Google Scholar
Heller RC, Marians KJ (2006a) Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439:557–562. doi:10.1038/nature04329
CAS
PubMed
Article
Google Scholar
Heller RC, Marians KJ (2006b) Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol 7:932–943. doi:10.1038/nrm2058
CAS
PubMed
Article
Google Scholar
Higgins NP, Kato K, Strauss B (1976) A model for replication repair in mammalian cells. J Mol Biol 101:417–425
CAS
PubMed
Article
Google Scholar
Hong X, Cadwell GW, Kogoma T (1995) Escherichia coli RecG and RecA proteins in R-loop formation. EMBO J 14:2385–2392
CAS
PubMed
PubMed Central
Google Scholar
Horiuchi T, Maki H, Sekiguchi M (1984) RNase H-defective mutants of Escherichia coli: a possible discriminatory role of RNase H in initiation of DNA replication. Mol Gen Genet MGG 195:17–22
CAS
PubMed
Article
Google Scholar
Ishioka K, Iwasaki H, Shinagawa H (1997) Roles of the recG gene product of Escherichia coli in recombination repair: effects of the delta recG mutation on cell division and chromosome partition. Genes Genet Syst 72:91–99
CAS
PubMed
Article
Google Scholar
Ivanova D, Taylor T, Smith SL et al (2015) Shaping the landscape of the Escherichia coli chromosome: replication-transcription encounters in cells with an ectopic replication origin. Nucleic Acids Res 43:7865–7877. doi:10.1093/nar/gkv704
CAS
PubMed
PubMed Central
Article
Google Scholar
Jaktaji RP, Lloyd RG (2003) PriA supports two distinct pathways for replication restart in UV-irradiated Escherichia coli cells. Mol Microbiol 47:1091–1100
CAS
PubMed
Article
Google Scholar
Khidhir MA, Casaregola S, Holland IB (1985) Mechanism of transient inhibition of DNA synthesis in ultraviolet-irradiated E. coli: inhibition is independent of recA whilst recovery requires RecA protein itself and an additional, inducible SOS function. Mol Gen Genet MGG 199:133–140
CAS
PubMed
Article
Google Scholar
Kogoma T (1997) Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev MMBR 61:212–238
CAS
PubMed
Google Scholar
Kowalczykowski SC (2000) Initiation of genetic recombination and recombination-dependent replication. Trends Biochem Sci 25:156–165
CAS
PubMed
Article
Google Scholar
Le Masson M, Baharoglu Z, Michel B (2008) ruvA and ruvB mutants specifically impaired for replication fork reversal. Mol Microbiol 70:537–548
PubMed
PubMed Central
Article
CAS
Google Scholar
Lestini R, Michel B (2007) UvrD controls the access of recombination proteins to blocked replication forks. EMBO J 26:3804–3814. doi:10.1038/sj.emboj.7601804
CAS
PubMed
PubMed Central
Article
Google Scholar
Lloyd RG (1991) Conjugational recombination in resolvase-deficient ruvC mutants of Escherichia coli K-12 depends on recG. J Bacteriol 173:5414–5418
CAS
PubMed
PubMed Central
Google Scholar
Lloyd RG, Buckman C (1991) Genetic analysis of the recG locus of Escherichia coli K-12 and of its role in recombination and DNA repair. J Bacteriol 173:1004–1011
CAS
PubMed
PubMed Central
Google Scholar
Lloyd RG, Buckman C (1995) Conjugational recombination in Escherichia coli: genetic analysis of recombinant formation in Hfr × F− crosses. Genetics 139:1123–1148
CAS
PubMed
PubMed Central
Google Scholar
Lloyd RG, Sharples GJ (1993) Dissociation of synthetic Holliday junctions by E. coli RecG protein. EMBO J 12:17–22
CAS
PubMed
PubMed Central
Google Scholar
Lloyd RG, Benson FE, Shurvinton CE (1984) Effect of ruv mutations on recombination and DNA repair in Escherichia coli K12. Mol Gen Genet MGG 194:303–309
CAS
PubMed
Article
Google Scholar
Lopez CR, Yang S, Deibler RW et al (2005) A role for topoisomerase III in a recombination pathway alternative to RuvABC. Mol Microbiol 58:80–101. doi:10.1111/j.1365-2958.2005.04812.x
CAS
PubMed
Article
Google Scholar
Lovett ST (2006) Replication arrest-stimulated recombination: dependence on the RecA paralog, RadA/Sms and translesion polymerase, DinB. DNA Repair 5:1421–1427. doi:10.1016/j.dnarep.2006.06.008
CAS
PubMed
Article
Google Scholar
Lovett ST, Drapkin PT, Sutera VA, Gluckman-Peskind TJ (1993) A sister-strand exchange mechanism for recA-independent deletion of repeated DNA sequences in Escherichia coli. Genetics 135:631–642
CAS
PubMed
PubMed Central
Google Scholar
Maduike NZ, Tehranchi AK, Wang JD, Kreuzer KN (2014) Replication of the Escherichia coli chromosome in RNase HI-deficient cells: multiple initiation regions and fork dynamics. Mol Microbiol 91:39–56. doi:10.1111/mmi.12440
CAS
PubMed
Article
Google Scholar
Magner DB, Blankschien MD, Lee JA et al (2007) RecQ promotes toxic recombination in cells lacking recombination intermediate-removal proteins. Mol Cell 26:273–286. doi:10.1016/j.molcel.2007.03.012
CAS
PubMed
PubMed Central
Article
Google Scholar
Mahdi AA, Lloyd RG (1989) Identification of the recR locus of Escherichia coli K-12 and analysis of its role in recombination and DNA repair. Mol Gen Genet MGG 216:503–510
CAS
PubMed
Article
Google Scholar
Mahdi AA, Sharples GJ, Mandal TN, Lloyd RG (1996) Holliday junction resolvases encoded by homologous rusA genes in Escherichia coli K-12 and phage 82. J Mol Biol 257:561–573. doi:10.1006/jmbi.1996.0185
CAS
PubMed
Article
Google Scholar
Mahdi AA, Briggs GS, Lloyd RG (2012) Modulation of DNA damage tolerance in Escherichia coli recG and ruv strains by mutations affecting PriB, the ribosome and RNA polymerase. Mol Microbiol 86:675–691. doi:10.1111/mmi.12010
CAS
PubMed
PubMed Central
Article
Google Scholar
Mandal TN, Mahdi AA, Sharples GJ, Lloyd RG (1993) Resolution of Holliday intermediates in recombination and DNA repair: indirect suppression of ruvA, ruvB, and ruvC mutations. J Bacteriol 175:4325–4334
CAS
PubMed
PubMed Central
Google Scholar
Manosas M, Perumal SK, Bianco PR et al (2013) RecG and UvsW catalyse robust DNA rewinding critical for stalled DNA replication fork rescue. Nat Commun 4:2368. doi:10.1038/ncomms3368
PubMed
PubMed Central
Article
CAS
Google Scholar
Matson SW, Nelson WC, Morton BS (1993) Characterization of the reaction product of the oriT nicking reaction catalyzed by Escherichia coli DNA helicase I. J Bacteriol 175:2599–2606
CAS
PubMed
PubMed Central
Google Scholar
McGlynn P, Lloyd RG (2000) Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 101:35–45. doi:10.1016/S0092-8674(00)80621-2
CAS
PubMed
Article
Google Scholar
McGlynn P, Lloyd RG (2001) Action of RuvAB at replication fork structures. J Biol Chem 276:41938–41944. doi:10.1074/jbc.M107945200
CAS
PubMed
Article
Google Scholar
McGlynn P, Lloyd RG (2002) Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol 3:859–870. doi:10.1038/nrm951
CAS
PubMed
Article
Google Scholar
McGlynn P, Al-Deib AA, Liu J et al (1997) The DNA replication protein PriA and the recombination protein RecG bind D-loops. J Mol Biol 270:212–221. doi:10.1006/jmbi.1997.1120
CAS
PubMed
Article
Google Scholar
McGlynn P, Lloyd RG, Marians KJ (2001) Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled. Proc Natl Acad Sci USA 98:8235–8240. doi:10.1073/pnas.121007798
CAS
PubMed
PubMed Central
Article
Google Scholar
Meneghini R, Hanawalt PC (1975) Postreplication repair in human cells: on the presence of gaps opposite dimers and recombination. Basic Life Sci 5B:639–642
CAS
PubMed
Google Scholar
Merrikh H, Zhang Y, Grossman AD, Wang JD (2012) Replication-transcription conflicts in bacteria. Nat Rev Microbiol 10:449–458. doi:10.1038/nrmicro2800
CAS
PubMed
PubMed Central
Google Scholar
Michel B, Leach D (2012) Homologous recombination-enzymes and pathways. EcoSal Plus. doi:10.1128/ecosalplus.7.2.7
PubMed
Google Scholar
Morimatsu K, Kowalczykowski SC (2003) RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11:1337–1347
CAS
PubMed
Article
Google Scholar
Morimatsu K, Wu Y, Kowalczykowski SC (2012) RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 5′ terminus: implication for repair of stalled replication forks. J Biol Chem 287:35621–35630. doi:10.1074/jbc.M112.397034
CAS
PubMed
PubMed Central
Article
Google Scholar
O’Reilly EK, Kreuzer KN (2004) Isolation of SOS constitutive mutants of Escherichia coli. J Bacteriol 186:7149–7160. doi:10.1128/JB.186.21.7149-7160.2004
PubMed
PubMed Central
Article
CAS
Google Scholar
Odahara M, Masuda Y, Sato M et al (2015) RECG maintains plastid and mitochondrial genome stability by suppressing extensive recombination between short dispersed repeats. PLoS Genet 11:e1005080. doi:10.1371/journal.pgen.1005080
PubMed
PubMed Central
Article
CAS
Google Scholar
Otsuji N, Iyehara H, Hideshima Y (1974) Isolation and characterization of an Escherichia coli ruv mutant which forms nonseptate filaments after low doses of ultraviolet light irradiation. J Bacteriol 117:337–344
CAS
PubMed
PubMed Central
Google Scholar
Reyes-Lamothe R, Nicolas E, Sherratt DJ (2012) Chromosome replication and segregation in bacteria. Annu Rev Genet 46:121–143. doi:10.1146/annurev-genet-110711-155421
CAS
PubMed
Article
Google Scholar
Rocha EPC, Cornet E, Michel B (2005) Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 1:e15. doi:10.1371/journal.pgen.0010015
PubMed
PubMed Central
Article
CAS
Google Scholar
Rudolph CJ, Upton AL, Lloyd RG (2007) Replication fork stalling and cell cycle arrest in UV-irradiated Escherichia coli. Genes Dev 21:668–681. doi:10.1101/gad.417607
CAS
PubMed
PubMed Central
Article
Google Scholar
Rudolph CJ, Upton AL, Lloyd RG (2008) Maintaining replication fork integrity in UV-irradiated Escherichia coli cells. DNA Repair 7:1589–1602. doi:10.1016/j.dnarep.2008.06.012
CAS
PubMed
Article
Google Scholar
Rudolph CJ, Upton AL, Harris L, Lloyd RG (2009a) Pathological replication in cells lacking RecG DNA translocase. Mol Microbiol 73:352–366. doi:10.1111/j.1365-2958.2009.06773.x
CAS
PubMed
PubMed Central
Article
Google Scholar
Rudolph CJ, Upton AL, Lloyd RG (2009b) Replication fork collisions cause pathological chromosomal amplification in cells lacking RecG DNA translocase. Mol Microbiol 74:940–955. doi:10.1111/j.1365-2958.2009.06909.x
CAS
PubMed
PubMed Central
Article
Google Scholar
Rudolph CJ, Mahdi AA, Upton AL, Lloyd RG (2010a) RecG protein and single-strand DNA exonucleases avoid cell lethality associated with PriA helicase activity in Escherichia coli. Genetics 186:473–492. doi:10.1534/genetics.110.120691
CAS
PubMed
PubMed Central
Article
Google Scholar
Rudolph CJ, Upton AL, Briggs GS, Lloyd RG (2010b) Is RecG a general guardian of the bacterial genome? DNA Repair 9:210–223. doi:10.1016/j.dnarep.2009.12.014
CAS
PubMed
Article
Google Scholar
Rudolph CJ, Upton AL, Stockum A et al (2013) Avoiding chromosome pathology when replication forks collide. Nature 500:608–611. doi:10.1038/nature12312
CAS
PubMed
Article
Google Scholar
Rupp WD, Howard-Flanders P (1968) Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31:291–304
CAS
PubMed
Article
Google Scholar
Ryder L, Whitby MC, Lloyd RG (1994) Mutation of recF, recJ, recO, recQ, or recR improves Hfr recombination in resolvase-deficient ruv recG strains of Escherichia coli. J Bacteriol 176:1570–1577
CAS
PubMed
PubMed Central
Google Scholar
Sarbajna S, Davies D, West SC (2014) Roles of SLX1-SLX4, MUS81-EME1, and GEN1 in avoiding genome instability and mitotic catastrophe. Genes Dev 28:1124–1136. doi:10.1101/gad.238303.114
CAS
PubMed
PubMed Central
Article
Google Scholar
Seigneur M, Ehrlich SD, Michel B (2000) RuvABC-dependent double-strand breaks in dnaBts mutants require recA. Mol Microbiol 38:565–574
CAS
PubMed
Article
Google Scholar
Sharples GJ, Chan SN, Mahdi AA et al (1994) Processing of intermediates in recombination and DNA repair: identification of a new endonuclease that specifically cleaves Holliday junctions. EMBO J 13:6133–6142
CAS
PubMed
PubMed Central
Google Scholar
Sharples GJ, Ingleston SM, Lloyd RG (1999) Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG, and RusA. J Bacteriol 181:5543–5550
CAS
PubMed
PubMed Central
Google Scholar
Smith GR (1991) Conjugational recombination in E. coli: myths and mechanisms. Cell 64:19–27
CAS
PubMed
Article
Google Scholar
Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD (2010) Co-orientation of replication and transcription preserves genome integrity. PLoS Genet 6:e1000810. doi:10.1371/journal.pgen.1000810
PubMed
PubMed Central
Article
CAS
Google Scholar
Stockum A, Lloyd RG, Rudolph CJ (2012) On the viability of Escherichia coli cells lacking DNA topoisomerase I. BMC Microbiol 12:26. doi:10.1186/1471-2180-12-26
CAS
PubMed
PubMed Central
Article
Google Scholar
Storm PK, Hoekstra WP, de Haan PG, Verhoef C (1971) Genetic recombination in Escherichia coli. IV. Isolation and characterization of recombination-deficiency mutants of Escherichia coli K12. Mutat Res 13:9–17
CAS
PubMed
Article
Google Scholar
Syeda AH, Hawkins M, McGlynn P (2014) Recombination and replication. Cold Spring Harb Perspect Biol 6:a016550. doi:10.1101/cshperspect.a016550
PubMed
Article
Google Scholar
Tadokoro T, Kanaya S (2009) Ribonuclease H: molecular diversities, substrate binding domains, and catalytic mechanism of the prokaryotic enzymes. FEBS J 276:1482–1493. doi:10.1111/j.1742-4658.2009.06907.x
CAS
PubMed
Article
Google Scholar
Tanaka T, Masai H (2006) Stabilization of a stalled replication fork by concerted actions of two helicases. J Biol Chem 281:3484–3493. doi:10.1074/jbc.M510979200
CAS
PubMed
Article
Google Scholar
Thakur RS, Basavaraju S, Khanduja JS et al (2015) Mycobacterium tuberculosis RecG protein but not RuvAB or RecA protein is efficient at remodeling the stalled replication forks: implications for multiple mechanisms of replication restart in mycobacteria. J Biol Chem 290:24119–24139. doi:10.1074/jbc.M115.671164
CAS
PubMed
PubMed Central
Article
Google Scholar
Trautinger BW, Jaktaji RP, Rusakova E, Lloyd RG (2005) RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. Mol Cell 19:247–258. doi:10.1016/j.molcel.2005.06.004
CAS
PubMed
Article
Google Scholar
Vincent SD, Mahdi AA, Lloyd RG (1996) The RecG branch migration protein of Escherichia coli dissociates R-loops. J Mol Biol 264:713–721. doi:10.1006/jmbi.1996.0671
CAS
PubMed
Article
Google Scholar
Wallet C, Le Ret M, Bergdoll M et al (2015) The RECG1 DNA Translocase Is a Key Factor in Recombination Surveillance, Repair, and Segregation of the Mitochondrial DNA in Arabidopsis. Plant Cell 27:2907–2925. doi:10.1105/tpc.15.00680
CAS
PubMed
PubMed Central
Google Scholar
Wang JD, Berkmen MB, Grossman AD (2007) Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis. Proc Natl Acad Sci U S A 104:5608–5613. doi:10.1073/pnas.0608999104
CAS
PubMed
PubMed Central
Article
Google Scholar
Wardrope L, Okely E, Leach D (2009) Resolution of joint molecules by RuvABC and RecG following cleavage of the Escherichia coli chromosome by EcoKI. PLoS ONE 4:e6542. doi:10.1371/journal.pone.0006542
PubMed
PubMed Central
Article
CAS
Google Scholar
Wendel BM, Courcelle CT, Courcelle J (2014) Completion of DNA replication in Escherichia coli. Proc Natl Acad Sci USA 111:16454–16459. doi:10.1073/pnas.1415025111
CAS
PubMed
PubMed Central
Article
Google Scholar
West SC, Cassuto E, Howard-Flanders P (1981) Mechanism of E. coli RecA protein directed strand exchanges in post-replication repair of DNA. Nature 294:659–662
CAS
PubMed
Article
Google Scholar
Whitby MC, Lloyd RG (1995) Branch migration of three-strand recombination intermediates by RecG, a possible pathway for securing exchanges initiated by 3′-tailed duplex DNA. EMBO J 14:3302–3310
CAS
PubMed
PubMed Central
Google Scholar
Whitby MC, Lloyd RG (1998) Targeting Holliday junctions by the RecG branch migration protein of Escherichia coli. J Biol Chem 273:19729–19739
CAS
PubMed
Article
Google Scholar
Whitby MC, Ryder L, Lloyd RG (1993) Reverse branch migration of Holliday junctions by RecG protein: a new mechanism for resolution of intermediates in recombination and DNA repair. Cell 75:341–350
CAS
PubMed
Article
Google Scholar
Wigley DB (2013) Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nat Rev Microbiol 11:9–13. doi:10.1038/nrmicro2917
CAS
PubMed
Article
Google Scholar
Willetts N, Wilkins B (1984) Processing of plasmid DNA during bacterial conjugation. Microbiol Rev 48:24–41
CAS
PubMed
PubMed Central
Google Scholar
Yeeles JTP, Marians KJ (2011) The Escherichia coli replisome is inherently DNA damage tolerant. Science 334:235–238. doi:10.1126/science.1209111
CAS
PubMed
PubMed Central
Article
Google Scholar
Zegeye ED, Balasingham SV, Laerdahl JK et al (2012) Mycobacterium tuberculosis RecG binds and unwinds model DNA substrates with a preference for Holliday junctions. Microbiol Read Engl 158:1982–1993. doi:10.1099/mic.0.058693-0
CAS
Article
Google Scholar
Zhang J, Mahdi AA, Briggs GS, Lloyd RG (2010) Promoting and avoiding recombination: contrasting activities of the Escherichia coli RuvABC Holliday junction resolvase and RecG DNA translocase. Genetics 185:23–37. doi:10.1534/genetics.110.114413
CAS
PubMed
PubMed Central
Article
Google Scholar