Skip to main content
Log in

Complete mitochondrial genomes of two gelechioids, Mesophleps albilinella and Dichomeris ustalella (Lepidoptera: Gelechiidae), with a description of gene rearrangement in Lepidoptera

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

We sequenced the entire mitochondrial genome (mitogenome) of two gelechioids, Mesophleps albilinella and Dichomeris ustalella, and compared their genome organization and sequence composition to those of available gelechioid mitogenomes for an enhanced understanding of Gelechioidea genomic characteristics. We compared all available lepidopteran mitogenome arrangements, including that of M. albilinella, which is unique in Gelechioidea, to comprehend the extensiveness and mechanisms of gene rearrangement in Lepidoptera. The genomes of M. albilinella and D. ustalella are 15,274 and 15,410 bp in size, respectively, with the typical sets of mitochondrial (mt) genes. The COI gene begins with CGA (arginine) in all sequenced gelechioids, including M. albilinella and D. ustalella, reinforcing the feature as a synapomorphic trait, at least in the Gelechioidea. Each 353- and 321-bp long A + T-rich region of M. albilinella and D. ustalella contains one (D. ustalella) or two (M. albilinella) tRNA-like structures. The M. albilinella mitogenome has a unique gene arrangement among the Gelechioidea: ARNESF (the underline signifies an inverted gene) at the ND3 and ND5 junction, as opposed to the ARNSEF that is found in ancestral insects. An extensive search of available lepidopteran mitogenomes, including that of M. albilinella, turned up six rearrangements that differ from those of ancestral insects. Most of the rearrangements can be explained by the tandem duplication-random loss model, but inversion, which requires recombination, is also found in two cases, including M. albilinella. Excluding the MIQ rearrangement at the A + T-rich region and ND2 junction, which is found in nearly all Ditrysia, most of the remaining rearrangements found in Lepidoptera appear to be independently derived in that they are automorphic at several taxonomic scales, although current mitogenomic data are limited, particularly for congeneric data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boore JL, Collins TM, Stanton D, Daehler LL, Brown WM (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376:163–165

    Article  CAS  PubMed  Google Scholar 

  • Boore JL, Lavrov DV, Brown WM (1998) Gene translocation links insects and crustaceans. Nature 392:667–668

    Article  CAS  PubMed  Google Scholar 

  • Brown GG, Gadaleta G, Pepe G, Saccone C, Sbisà E (1986) Structural conservation and variation in the D loop-containing region of vertebrate mitochondrial DNA. J Mol Biol 192:503–511

    Article  CAS  PubMed  Google Scholar 

  • Cameron SL (2014) Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol 59:95–117

    Article  CAS  PubMed  Google Scholar 

  • Cameron SL, Whiting MF (2008) The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene 408:112–123

    Article  CAS  PubMed  Google Scholar 

  • Cameron SL, Lambkin CL, Barker SC, Whiting MF (2007) A mitochondrial genome phylogeny of Diptera: whole genome sequence data accurately resolve relationships over broad timescales with high precision. Syst Entomol 32:40–59

    Article  Google Scholar 

  • Cameron SL, Yoshizawa K, Mizukoshi A, Whiting MF, Johnson KP (2011) Mitochondrial genome deletions and minicircles are common in lice (Insecta: Phthiraptera). BMC Genom 12:394

    Article  CAS  Google Scholar 

  • Cantatore P, Gadaleta MN, Roberti M, Saccone C, Wilson AC (1987) Duplication and remodeling of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature 329:853–855

    Article  CAS  PubMed  Google Scholar 

  • Cao YQ, Ma C, Chen JY, Yang DR (2012) The complete mitochondrial genomes of two ghost moths, Thitarodes renzhiensis and Thitarodes yunnanensis: the ancestral gene arrangement in Lepidoptera. BMC Genom 13:276

    Article  CAS  Google Scholar 

  • Curole JP, Kocher TD (1999) Mitogenomics: digging deeper with complete mitochondrial genomes. Trends Ecol Evol 14:394–398

    Article  PubMed  Google Scholar 

  • Dowton M, Austin AD (1999) Evolutionary dynamics of a mitochondrial rearrangement ‘hotspot’ in the Hymenoptera. Mol Biol Evol 16:298–309

    Article  CAS  PubMed  Google Scholar 

  • Dowton M, Campbell NJH (2001) Intramitochondrial recombination: is it why some mitochondrial genes sleep around? Trends Ecol Evol 16:269–271

    Article  PubMed  Google Scholar 

  • Dowton M, Castro LR, Austin AD (2002) Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates: the examination of genome ‘morphology’. Invertebr Syst 16:345–356

    Article  Google Scholar 

  • Dowton M, Castro LR, Campbell SL, Bargon SD, Austin AD (2003) Frequent mitochondrial gene rearrangements at the Hymenoptera nad3-nad5 junction. J Mol Evol 56:517–526

    Article  CAS  PubMed  Google Scholar 

  • Dowton M, Cameron SL, Dowavic JI, Austin AD, Whiting MF (2009) Characterization of 67 mitochondrial tRNA gene rearrangements in the Hymenoptera suggests that mitochondrial tRNA gene position is selectively neutral. Mol Biol Evol 26:1607–1617

    Article  CAS  PubMed  Google Scholar 

  • Feijao PC, Neiva LS, Azeredo-Espin AML, Lessinger AC (2006) AMiGA: the arthropodan mitochondrial genomes accessible database. Bioinformatics 22:902–903

    Article  CAS  PubMed  Google Scholar 

  • Garey JR, Wolstenholme DR (1989) Platyhelminth mitochondrial DNA: evidence for early evolutionary origin of a tRNAserAGN that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons. J Mol Evol 28:374–387

    Article  CAS  PubMed  Google Scholar 

  • Hao J, Sun Q, Zhao H, Sun X, Gai Y, Yang Q (2012) The complete mitochondrial genome of Ctenoptilum vasava (Lepidoptera: Hesperiidae: Pyrginae) and its phylogenetic implication. Comp Funct Genomics 2012:1–13

    Article  Google Scholar 

  • Kaila L, Mutanen M, Nyman T (2011) Phylogeny of the mega-diverse Gelechioidea (Lepidoptera): adaptations and determinants of success. Mol Phylogenet Evol 61:801–809

    Article  PubMed  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim I, Lee EM, Seol KY, Yun EY, Lee YB, Hwang JS, Jin BR (2006) The mitochondrial genome of the Korean hairstreak, Coreana raphaelis (Lepidoptera: Lycaenidae). Insect Mol Biol 15:217–225

    Article  CAS  PubMed  Google Scholar 

  • Kim MI, Baek JY, Kim MJ, Jeong HC, Kim KG, Bae CH, Han YS, Jin BR, Kim I (2009) Complete nucleotide sequence and organization of the mitogenome of the redspotted apollo butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) and comparison with other lepidopteran insects. Mol Cells 28:347–363

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Wan X, Kim KG, Hwang JS, Kim I (2010) Complete nucleotide sequence and organization of the mitogenome of endangered Eumenis autonoe (Lepidoptera: Nymphalidae). Afr J Biotechnol 9:735–754

    Article  CAS  Google Scholar 

  • Kim MJ, Kang AR, Jeong HC, Kim KG, Kim I (2011) Reconstructing intraordinal relationships in Lepidoptera using mitochondrial genome data with the description of two newly sequenced lycaenids, Spindasis takanonis and Protantigius superans (Lepidoptera: Lycaenidae). Mol Phylogenet Evol 61:436–445

    Article  PubMed  Google Scholar 

  • Kim JS, Park JS, Kim MJ, Kang PD, Kim SG, Jin BR, Han YS, Kim I (2012) Complete nucleotide sequence and organization of the mitochondrial genome of eri-silkworm, Samia cynthia ricini (Lepidoptera: Saturniidae). J Asia Pac Entomol 15:162–173

    Article  CAS  Google Scholar 

  • Kim MJ, Wang AR, Park JS, Kim I (2014) Complete mitochondrial genomes of five skippers (Lepidoptera: Hesperiidae) and phylogenetic reconstruction of Lepidoptera. Gene 549:97–112

    Article  CAS  PubMed  Google Scholar 

  • Li HH, Sattler K (2012) A taxonomic revision of the genus Mesophleps Hübner, 1825 (Lepidoptera: Gelechiidae). Zootaxa 3373:1–82

    Google Scholar 

  • Lowe TM, Eddy SR (1997) TRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margam VM, Coates BS, Hellmich RL, Agunbiade T, Seufferheld MJ, Sun W et al (2011) Mitochondrial genome sequence and expression profiling for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae). PLoS One 6:e16444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortiz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu Rev Ecol Syst 18:269–292

    Article  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474

    Article  CAS  PubMed  Google Scholar 

  • Park KT (1990) Three new species of genera Brachyacma Meyrick and Arisloielia Hiibner (Lepidoptera I Gelechiidae). J Appl Entomol 29:136–143

    Google Scholar 

  • Park KT (1991) Gelechiidae (Lepidoptera) from North Korea with description of two new species. Annls Hist-Nat Mus Natn Hung 83:117–123

    Google Scholar 

  • Park JS, Kim SS, Kim KY, Kim I (2014) Complete mitochondrial genome of Suzuki’s Promolactis moth Promalactis suzukiella (Lepidoptera: Oecophoridae). Mitochondrial DNA Early Online:1–2

  • Parsons MS (1995) A review of the scarce and threatened ethmiine, stathmopodine and gelechiid moths of Great Britain (No. 16). Joint Nature Conservation Committee, Peterborough

  • Rokas A, Holland PWH (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459

    Article  PubMed  Google Scholar 

  • Saito S, Tamuea K, Aotsuka T (2005) Replication origin of mitochondrial DNA in insects. Genetics 171:433–448

    Article  Google Scholar 

  • Shao R, Barker SC (2003) The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. Mol Biol Evol 20:362–370

    Article  CAS  PubMed  Google Scholar 

  • Shao R, Campbell NJH, Barker SC (2001) Numerous gene rearrangements in the mitochondrial genome of the wallaby louse, Heterodoxus macropus (Phthiraptera). Mol Biol Evol 18:858–865

    Article  CAS  PubMed  Google Scholar 

  • Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410:103–123

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang M, Tan M, Meng G, Yang S, Su X, Liu S, Song W, Li Y, Wu Q, Zhang A, Zhou X (2014) Multiplex sequencing of pooled mitochondrial genomes-a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Res 42:e166

    Article  PubMed  PubMed Central  Google Scholar 

  • Thao ML, Baumann L, Baumann P (2004) Organization of the mitochondrial genomes of whiteflies, aphids and pysillids (Hemiptera: Sternorrhyncha). BMC Evol Biol 4:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmermans MJTN, Lees DC, Simonsen TJ (2014) Towards a mitogenomic phylogeny of Lepidoptera. Mol Phylogenet Evol 79:169–178

    Article  PubMed  Google Scholar 

  • van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC, Minet J et al (2011) Order Lepidoptera Linnaeus, 1758. In: Zhang ZQ (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:212–221

  • Wan X, Kim MI, Kim MJ, Kim I (2012) Complete mitochondrial genome of the free-living earwig, Challia fletcheri (Dermaptera: Pygidicranidae) and phylogeny of Polyneoptera. PLoS One 7:e42056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan X, Kim MJ, Kim I (2013) Description of new mitochondrial genomes (Spodoptera litura, Noctuoidea and Cnaphalocrocis medinalis, Pyraloidea) and phylogenetic reconstruction of Lepidoptera with the comment on optimization schemes. Mol Biol Rep 40:6333–6349

    Article  CAS  PubMed  Google Scholar 

  • Wang AR, Jeong HC, Han YS, Kim I (2014) The complete mitochondrial genome of the mountainous duskywing, Erynnis montanus (Lepidoptera: Hesperiidae): a new gene arrangement in Lepidoptera. Mitochondrial DNA 25:93–94

    Article  CAS  PubMed  Google Scholar 

  • Xuan S, Song F, Cao L, Wang J, Li H, Cao T (2015) The complete mitochondrial genome of the butterfly Euripus nyctelius (Lepidoptera: Nymphalidae). Mitochondrial DNA Early Online:1–2

  • Zhao J, Sun Y, Xiao L, Tan Y, Dai H, Bai L (2014) Complete mitochondrial genome of the pink bollworm Pectinophora gossypiella (Lepidoptera: Gelechiidae). Mitochondrial DNA Early online:1–2

Download references

Acknowledgments

This study was financially supported by Chonnam National University, 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iksoo Kim.

Ethics declarations

The authors declare that they have no conflict of interest. For this type of study formal consent is not required. This article does not contain any studies with human participants performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.S., Kim, M.J., Jeong, S.Y. et al. Complete mitochondrial genomes of two gelechioids, Mesophleps albilinella and Dichomeris ustalella (Lepidoptera: Gelechiidae), with a description of gene rearrangement in Lepidoptera. Curr Genet 62, 809–826 (2016). https://doi.org/10.1007/s00294-016-0585-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-016-0585-3

Keywords

Navigation