Skip to main content
Log in

Effects of calmodulin on expression of lignin-modifying enzymes in Pleurotus ostreatus

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 09 January 2015

Abstract

Previously, we suppressed the expression of genes encoding isozymes of lignin peroxidase (LiP) and manganese peroxidase (MnP) using a calmodulin (CaM) inhibitor, W7, in the white-rot fungus Phanerochaete chrysosporium; this suggested that CaM positively regulates their expression. Here, we studied the role of CaM in another white-rot fungus, Pleurotus ostreatus, which produces MnP and versatile peroxidase (VP), but not LiP. W7 upregulated Mn2+-dependent oxidation of guaiacol, suggesting that CaM negatively regulates the production of the enzymes. Suppression of CaM in P. ostreatus using RNAi also led to upregulation of enzyme activity, whereas overexpression of CaM in P. ostreatus caused downregulation. Real-time RT-PCR showed that MnP1-6 and VP3 levels in the CaM-knockdown strain were higher than those in the wild-type strain, while MnP-5 and -6 and VP1 and 2 levels in the CaM-overexpressing strain were lower than in the wild type. Moreover, we also found that another ligninolytic enzyme, laccase, which is not produced by P. chrysosporium, was negatively regulated by CaM in P. ostreatus similar to MnP and VP. Although overexpression of CaM did not reduce the ability of P. ostreatus to digest beech wood powder, the percentage of lignin remaining in the digest was slightly higher than in the wild-type strain digest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahn I-P, Suh S-C (2007) Calcium/calmodulin-dependent signaling for prepenetration development in Cochliobolus miyabeanus infecting rice. J Gen Plant Pathol 73:113–120

    Article  CAS  Google Scholar 

  • Ahn I-P, Uhm K-H, Kim S, Lee Y-H (2003) Signaling pathways involved in preinfection development of Colletotrichum gloeosporioides, C. coccodes, and C. dematium pathogenic on red pepper. Physiol Mol Plant Pathol 63:281–289

    Article  CAS  Google Scholar 

  • Amore A, Honda Y, Faraco V (2012) Copper induction of enhanced green fluorescent protein expression in Pleurotus ostreatus driven by laccase poxa1b promoter. FEMS Microbiol Lett 337:155–163

    Article  CAS  PubMed  Google Scholar 

  • Belinky PA, Flikshtein N, Lechenko S, Gepstein S, Dosoretz CG (2003) Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 69:6500–6506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonnarme P, Jeffries TW (1990) Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi. Appl Environ Microbiol 56:210–217

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boominathan K, Reddy CA (1992) cAMP-mediated differential regulation of lignin peroxidase and manganese-dependent peroxidase production in the white-rot basidiomycete Phanerochaete chrysosporium. Proc Natl Acad Sci USA 89:5586–5590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown JA, Glenn JK, Gold MH (1990) Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J Bacteriol 172:3125–3130

    PubMed Central  CAS  PubMed  Google Scholar 

  • Choinowski T, Blodig W, Winterhalter KH, Piontek K (1999) The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxy group on the Cβ of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol 286:809–827

    Article  CAS  PubMed  Google Scholar 

  • Cullen D, Kersten PJ (2004) Enzymology and molecular biology of lignin degradation. In: Brambl R, Marzluf GA (eds) Biochemistry and molecular biology (The Mycota). Springer, New York, pp 249–273

    Chapter  Google Scholar 

  • Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davis TN, Urdea MS, Masiarz FR, Thorner J (1986) Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell 47:423–431

    Article  CAS  PubMed  Google Scholar 

  • Dence CW (1992) The determination of lignin. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Heidelberg, pp 33–61

  • Fernandez-Fueyo E, Castanera R, Ruiz-Dueñas FJ, Lopez-Lucendo MF, Ramirez L, Pisabarro AG, Martinez AT (2014a) Ligninolytic peroxidase gene expression by Pleurotus ostreatus: differential regulation in lignocellulose medium and effect of temperature and pH. Fungal Genet Biol 18:003

    Google Scholar 

  • Fernandez-Fueyo E, Ruiz-Dueñas FJ, Martinez MJ, Romero A, Hammel KE, Medrano FJ, Martinez AT (2014b) Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability. Biotechnol Biofuels 7:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TK, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719

    Article  CAS  PubMed  Google Scholar 

  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385

    Article  CAS  PubMed  Google Scholar 

  • Gold MH, Kuwahara M, Chiu AA, Glenn JK (1984) Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 234:353–362

    Article  CAS  PubMed  Google Scholar 

  • Hatfielda R, Fukushima RS (2005) Can lignin be accurately measured? Crop Sci 45:832–839

  • Heinzkill M, Messner K (1997) The ligninolytic system of fungi. In: Anke T (ed) Fungal biotechnology. Chapman & Hall, London, pp 213–227

    Google Scholar 

  • Hidaka H, Sasaki Y, Tanaka T, Endo T, Ohno S, Fujii Y, Nagata T (1981) N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc Natl Acad Sci USA 78:4354–4357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoeflich KP, Ikura M (2002) Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108:739–742

    Article  CAS  PubMed  Google Scholar 

  • Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87:871–897

    Article  CAS  PubMed  Google Scholar 

  • Honda Y, Matsuyama T, Irie T, Watanabe T, Kuwahara M (2000) Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus. Curr Genet 37:209–212

    Article  CAS  PubMed  Google Scholar 

  • Irie T, Honda Y, Hirano T, Sato T, Enei H, Watanabe T, Kuwahara M (2001a) Stable transformation of Pleurotus ostreatus to hygromycin B resistance using Lentinus edodes GPD expression signals. Appl Microbiol Biotechnol 56:707–709

    Article  CAS  PubMed  Google Scholar 

  • Irie T, Honda Y, Watanabe T, Kuwahara M (2001b) Efficient transformation of filamentous fungus Pleurotus ostreatus using single-strand carrier DNA. Appl Microbiol Biotechnol 55:563–565

    Article  CAS  PubMed  Google Scholar 

  • Irie T, Honda Y, Watanabe T, Kuwahara M (2001c) Homologous expression of recombinant manganese peroxidase genes in ligninolytic fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 55:566–570

    Article  CAS  PubMed  Google Scholar 

  • Kerem Z, Hadar Y (1993) Effect of manganese on lignin degradation by Pleurotus ostreatus during solid-state fermentation. Appl Environ Microbiol 59:4115–4120

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kirk TK, Connors WJ, Bleam RD, Hackett WF, Zeikus JG (1975) Preparation and microbial decomposition of synthetic C14 ligins. Proc Natl Acad Sci USA 72:2515–2519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kobayashi I, Yamada M, Kobayashi Y (2007) Calcium ion promotes successful penetration of powdery mildew fungi into barley cells. J Gen Plant Pathol 73:399–404

    Article  CAS  Google Scholar 

  • Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250

    Article  CAS  Google Scholar 

  • Li D, AIic M, Brown JA, Gold MH (1995) Regulation of manganese peroxidase gene transcription by hydrogen peroxide, chemical stress, and molecular oxygen. Appl Environ Microbiol 61:341–345

    PubMed Central  CAS  PubMed  Google Scholar 

  • MacDonald MJ, Paterson A, Broda P (1984) Possible relationship between cyclic AMP and idiophasic metabolism in the white rot fungus Phanerochaete chrysosporium. J Bacteriol 160:470–472

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  CAS  PubMed  Google Scholar 

  • Minami M, Kureha O, Mori M, Kamitsuji H, Suzuki K, Irie T (2007) Long serial analysis of gene expression for transcriptome profiling during the initiation of ligninolytic enzymes production in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 75:609–618

    Article  CAS  PubMed  Google Scholar 

  • Minami M, Suzuki K, Shimizu A, Hongo T, Sakamoto T, Ohyama N, Kitaura H, Kusaka A, Iwama K, Irie T (2009) Changes in the gene expression of the white rot fungus Phanerochaete chrysosporium due to the addition of a tropine. Biosci Biotechnol Biochem 73:1722–1731

    Article  CAS  PubMed  Google Scholar 

  • Morales M, Mate MJ, Romero A, Martinez MJ, Martinez AT, Ruiz-Dueñas FJ (2012) Two oxidation sites for low redox potential substrates: a directed mutagenesis, kinetic, and crystallographic study on Pleurotus eryngii versatile peroxidase. J Biol Chem 287:41053–41067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Osawa M, Swindells MB, Tanikawa J, Tanaka T, Mase T, Furuya T, Ikura M (1998) Solution structure of calmodulin-W-7 complex: the basis of diversity in molecular recognition. J Mol Biol 276:165–176

    Article  CAS  PubMed  Google Scholar 

  • Palmieri G, Giardina P, Marzullo L, Desiderio B, Nitti G, Cannio R, Sannia G (1993) Stability and activity of a phenol oxidase from the ligninolytic fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 39:632–636

    Article  CAS  PubMed  Google Scholar 

  • Paszczynski A, Pasti-Grigsby MB, Goszczynski S, Crawford RL, Crawford DL (1992) Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. Appl Environ Microbiol 58:3598–3604

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pezzella C, Autore F, Giardina P, Piscitelli A, Sannia G, Faraco V (2009) The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members. Curr Genet 55:45–57

    Article  CAS  PubMed  Google Scholar 

  • Pezzella C, Lettera V, Piscitelli A, Giardina P, Sannia G (2013) Transcriptional analysis of Pleurotus ostreatus laccase genes. Appl Microbiol Biotechnol 97:705–717

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Dueñas FJ, Morales M, Perez-Boada M, Choinowski T, Martínez MJ, Piontek K, Martínez AT (2007) Manganese oxidation site in Pleurotus eryngii versatile peroxidase: a site-directed mutagenesis, kinetic, and crystallographic study. Biochemistry 46:66–77

    Article  PubMed  Google Scholar 

  • Ruiz-Dueñas FJ, Fernández E, Martínez MJ, Martínez AT (2011) Pleurotus ostreatus heme peroxidases: an in silico analysis from the genome sequence to the enzyme molecular structure. C R Biol 334:795–805

    Article  PubMed  Google Scholar 

  • Sakamoto T, Kitaura H, Minami M, Honda Y, Watanabe T, Ueda A, Suzuki K, Irie T (2010) Transcriptional effect of a calmodulin inhibitor, W-7, on the ligninolytic enzyme genes in Phanerochaete chrysosporium. Curr Genet 56:401–410

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Yao Y, Hida Y, Honda Y, Watanabe T, Hashigaya W, Suzuki K, Irie T (2012) A calmodulin inhibitor, W-7 influences the effect of cyclic adenosine 3′, 5′-monophosphate signaling on ligninolytic enzyme gene expression in Phanerochaete chrysosporium. AMB Express 2:7

    Article  PubMed Central  PubMed  Google Scholar 

  • Sakamoto T, Honda Y, Kameshita I, Suzuki K, Irie T (2013) Isolation and heterologous expression of the Phanerochaete chrysosporium calmodulin gene. Mycoscience 54:241–246

    Article  CAS  Google Scholar 

  • Salame TM, Yarden O, Hadar Y (2010) Pleurotus ostreatus manganese-dependent peroxidase silencing impairs decolourization of Orange II. Microb Biotechnol 3:93–106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salame TM, Knop D, Tal D, Levinson D, Yarden O, Hadar Y (2012) Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus ostreatus. Appl Environ Microbiol 78:5341–5352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salame TM, Knop D, Levinson D, Yarden O, Hadar Y (2013) Redundancy among manganese peroxidases in Pleurotus ostreatus. Appl Environ Microbiol 79:2405–2415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salame TM, Knop D, Levinson D, Mabjeesh SJ, Yarden O, Hadar Y (2014) Inactivation of a Pleurotus ostreatus versatile peroxidase-encoding gene (mnp2) results in reduced lignin degradation. Environ Microbiol 16:225–277

    Article  Google Scholar 

  • Sato T, Ueno Y, Watanabe T, Mikami T, Matsumoto T (2004) Role of Ca2+/calmodulin signaling pathway on morphological development of Candida albicans. Biol Pharm Bull 27:1281–1284

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Zeng J, Chen S (2011) Increasing manganese peroxidase productivity of Phanerochaete chrysosporium by optimizing carbon sources and supplementing small molecules. Lett Appl Microbiol 53:120–123

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Lu L, Zhang CY, Singapuri A, Yuan S (2006) Calmodulin concentrates at the apex of growing hyphae and localizes to the Spitzenkörper in Aspergillus nidulans. Protoplasma 228:159–166

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Sakamoto T, Honda Y, Kagotani Y, Izumitsu K, Suzuki K, Irie T (2013) The white-rot fungus Pleurotus ostreatus transformant overproduced intracellular cAMP and laccase. Biosci Biotechnol Biochem 77:2309–2311

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the grant of an FS Stage Project for Advanced Low Carbon Technology Research and the Development Program of the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Irie.

Additional information

Communicated by U. Kües.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suetomi, T., Sakamoto, T., Tokunaga, Y. et al. Effects of calmodulin on expression of lignin-modifying enzymes in Pleurotus ostreatus . Curr Genet 61, 127–140 (2015). https://doi.org/10.1007/s00294-014-0460-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-014-0460-z

Keywords

Navigation