Skip to main content
Log in

Deletion of PaAif2 and PaAmid2, two genes encoding mitochondrial AIF-like oxidoreductases of Podospora anserina, leads to increased stress tolerance and lifespan extension

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Wild-type strains of the ascomycete Podospora anserina are characterized by a limited lifespan. Mitochondria play a central role in this ageing process raising the question of whether apoptosis-like processes, which are also connected to mitochondrial function, are involved in the control of the final stage in the fungal life cycle. While a role of two metacaspases in apoptosis and lifespan control was recently demonstrated in P. anserina, virtually nothing is known about the function of the protein family of apoptosis-inducing factors (AIFs). Here we report data about proteins belonging to this family. We demonstrate that the cytosolic members PaAIF1 and PaAMID1 do not affect lifespan. In contrast, loss of PaAIF2 and PaAMID2, which both were localized to mitochondria, are characterized by a significantly increased ROS tolerance and a prolonged lifespan. In addition, deletion of PaAmid2 severely affects sporogenesis. These data identify components of a caspase-independent molecular pathway to be involved in developmental processes and in the induction of programmed cell death in the senescent stage of P. anserina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MD, Durbin R, Falquet L, Fleischmann W, Gouzy J, Hermjakob H, Hulo N, Jonassen I, Kahn D, Kanapin A, Karavidopoulou Y, Lopez R, Marx B, Mulder NJ, Oinn TM, Pagni M, Servant F, Sigrist CJ, Zdobnov EM (2000) The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Bioinformatics 16:1145–1150

    Article  PubMed  CAS  Google Scholar 

  • Argyrou A, Blanchard JS (2004) Flavoprotein disulfide reductases: advances in chemistry and function. Prog Nucleic Acid Res Mol Biol 78:89–142

    Article  PubMed  CAS  Google Scholar 

  • Baniulis D, Yamashita E, Zhang H, Hasan SS, Cramer WA (2008) Structure-function of the cytochrome b6f complex. Photochem Photobiol 84:1349–1358

    Article  PubMed  CAS  Google Scholar 

  • Borghouts C, Osiewacz HD (1998) GRISEA, a copper-modulated transcription factor from Podospora anserina involved in senescence and morphogenesis, is an ortholog of MAC1 in Saccharomyces cerevisiae. Mol Gen Genet 260:492–502

    Article  PubMed  CAS  Google Scholar 

  • Borghouts C, Werner A, Elthon T, Osiewacz HD (2001) Copper-modulated gene expression and senescence in the filamentous fungus Podospora anserina. Mol Cell Biol 21:390–399

    Article  PubMed  CAS  Google Scholar 

  • Cano-Dominguez N, Alvarez-Delfin K, Hansberg W, Aguirre J (2008) NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa. Eukaryot Cell 7:1352–1361

    Article  PubMed  CAS  Google Scholar 

  • Castro A, Lemos C, Falcao A, Glass NL, Videira A (2008) Increased resistance of complex I mutants to phytosphingosine-induced programmed cell death. J Biol Chem 283:19314–19321

    Article  PubMed  CAS  Google Scholar 

  • Chaveroche MK, Ghigo JM, d’Enfert C (2000) A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res 28:E97

    Article  PubMed  CAS  Google Scholar 

  • Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786

    Article  PubMed  CAS  Google Scholar 

  • Cocheme HM, Murphy MP (2008) Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem 283:1786–1798

    Article  PubMed  CAS  Google Scholar 

  • Dufour E, Boulay J, Rincheval V, Sainsard-Chanet A (2000) A causal link between respiration and senescence in Podospora anserina. Proc Natl Acad Sci USA 97:4138–4143

    Article  PubMed  CAS  Google Scholar 

  • Esser K (1974) Podospora anserina. In: King RC (ed) Handbook of genetics. Plenum Press, New York, pp 531–551

    Google Scholar 

  • Fadeel B, Orrenius S (2005) Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 258:479–517

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Joza N, Tasdemir E, Maiuri MC, Hengartner M, Abrams JM, Tavernarakis N, Penninger J, Madeo F, Kroemer G (2008) No death without life: vital functions of apoptotic effectors. Cell Death Differ 15:1113–1123

    Article  PubMed  CAS  Google Scholar 

  • Gredilla R, Grief J, Osiewacz HD (2006) Mitochondrial free radical generation and lifespan control in the fungal aging model Podospora anserina. Exp Gerontol 41:439–447

    Article  PubMed  CAS  Google Scholar 

  • Hamann A, Krause K, Werner A, Osiewacz HD (2005) A two-step protocol for efficient deletion of genes in the filamentous ascomycete Podospora anserina. Curr Genet 48:270–275

    Article  PubMed  CAS  Google Scholar 

  • Hamann A, Brust D, Osiewacz HD (2007) Deletion of putative apoptosis factors leads to lifespan extension in the fungal ageing model Podospora anserina. Mol Microbiol 65:948–958

    Article  PubMed  CAS  Google Scholar 

  • Hamann A, Brust D, Osiewacz HD (2008) Apoptosis pathways in fungal growth, development and ageing. Trends Microbiol 16:276–283

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  • Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    PubMed  CAS  Google Scholar 

  • Herker E, Jungwirth H, Lehmann KA, Maldener C, Fröhlich KU, Wissing S, Büttner S, Fehr M, Sigrist S, Madeo F (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164:501–507

    Article  PubMed  CAS  Google Scholar 

  • Joza N, Pospisilik JA, Hangen E, Hanada T, Modjtahedi N, Penninger JM, Kroemer G (2009) AIF: not just an apoptosis-inducing factor. Ann N Y Acad Sci 1171:2–11

    Article  PubMed  CAS  Google Scholar 

  • Jung C, Higgins CM, Xu Z (2000) Measuring the quantity and activity of mitochondrial electron transport chain complexes in tissues of central nervous system using blue native polyacrylamide gel electrophoresis. Anal Biochem 286:214–223

    Article  PubMed  CAS  Google Scholar 

  • Kück U, Osiewacz HD, Schmidt U, Kappelhoff B, Schulte E, Stahl U, Esser K (1985) The onset of senescence is affected by DNA rearrangements of a discontinuous mitochondrial gene in Podospora anserina. Curr Genet 9:373–382

    Article  PubMed  Google Scholar 

  • Kunstmann B, Osiewacz HD (2008) Over-expression of an S-adenosylmethionine-dependent methyltransferase leads to an extended lifespan of Podospora anserina without impairments in vital functions. Aging Cell 7:651–662

    Article  PubMed  CAS  Google Scholar 

  • Lara-Ortiz T, Riveros-Rosas H, Aguirre J (2003) Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol Microbiol 50:1241–1255

    Article  PubMed  CAS  Google Scholar 

  • Laun P, Pichova A, Madeo F, Fuchs J, Ellinger A, Kohlwein S, Dawes I, Fröhlich KU, Breitenbach M (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39:1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Lecellier G, Silar P (1994) Rapid methods for nucleic acids extraction from Petri dish-grown mycelia. Curr Genet 25:122–123

    Article  PubMed  CAS  Google Scholar 

  • Lorin S, Dufour E, Boulay J, Begel O, Marsy S, Sainsard-Chanet A (2001) Overexpression of the alternative oxidase restores senescence and fertility in a long-lived respiration-deficient mutant of Podospora anserina. Mol Microbiol 42:1259–1267

    Article  PubMed  CAS  Google Scholar 

  • Lorin S, Dufour E, Sainsard-Chanet A (2006) Mitochondrial metabolism and aging in the filamentous fungus Podospora anserina. Biochim Biophys Acta 1757:604–610

    Article  PubMed  CAS  Google Scholar 

  • Luce K, Osiewacz HD (2009) Increasing organismal healthspan by enhancing mitochondrial protein quality control. Nat Cell Biol 11:852–858

    Article  PubMed  CAS  Google Scholar 

  • Malagnac F, Lalucque H, Lepere G, Silar P (2004) Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genet Biol 41:982–997

    Article  PubMed  CAS  Google Scholar 

  • Marzetti E, Wohlgemuth SE, Lees HA, Chung HY, Giovannini S, Leeuwenburgh C (2008) Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle. Mech Ageing Dev 129:542–549

    Article  PubMed  CAS  Google Scholar 

  • Modjtahedi N, Giordanetto F, Madeo F, Kroemer G (2006) Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 16:264–272

    Article  PubMed  CAS  Google Scholar 

  • Nijtmans LG, Henderson NS, Holt IJ (2002) Blue Native electrophoresis to study mitochondrial and other protein complexes. Methods 26:327–334

    Article  PubMed  CAS  Google Scholar 

  • Ohiro Y, Garkavtsev I, Kobayashi S, Sreekumar KR, Nantz R, Higashikubo BT, Duffy SL, Higashikubo R, Usheva A, Gius D, Kley N, Horikoshi N (2002) A novel p53-inducible apoptogenic gene, PRG3, encodes a homologue of the apoptosis-inducing factor (AIF). FEBS Lett 524:163–171

    Article  PubMed  CAS  Google Scholar 

  • Osiewacz HD (1994) A versatile shuttle cosmid vector for the efficient construction of genomic libraries and for the cloning of fungal genes. Curr Genet 26:87–90

    Article  PubMed  CAS  Google Scholar 

  • Osiewacz HD (2002) Genes, mitochondria and aging in filamentous fungi. Ageing Res Rev 1:425–442

    Article  PubMed  CAS  Google Scholar 

  • Osiewacz HD, Esser K (1984) The mitochondrial plasmid of Podospora anserina: a mobile intron of a mitochondrial gene. Curr Genet 8:299–305

    Article  CAS  Google Scholar 

  • Osiewacz HD, Kimpel E (1999) Mitochondrial–nuclear interactions and lifespan control in fungi. Exp Gerontol 34:901–909

    Article  PubMed  CAS  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  PubMed  CAS  Google Scholar 

  • Ozben T (2007) Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 96:2181–2196

    Article  PubMed  CAS  Google Scholar 

  • Pöggeler S, Masloff S, Hoff B, Mayrhofer S, Kück U (2003) Versatile EGFP reporter plasmids for cellular localization of recombinant gene products in filamentous fungi. Curr Genet 43:54–61

    PubMed  Google Scholar 

  • Riddell RW (1950) Permanent stained mycological preparations obtained by slide culture. Mycologia 42:265–270

    Article  Google Scholar 

  • Rizet G (1953) Sur l’impossibilité d’obtenir la multiplication ininterrompue et illimité de l’ascomycete Podospora anserina. C R Acad Sci Paris 237:838–855

    PubMed  CAS  Google Scholar 

  • Rockenfeller P, Madeo F (2008) Apoptotic death of ageing yeast. Exp Gerontol 43:876–881

    Article  PubMed  CAS  Google Scholar 

  • Savoldi M, Malavazi I, Soriani FM, Capellaro JL, Kitamoto K, da Silva Ferreira ME, Goldman MH, Goldman GH (2008) Farnesol induces the transcriptional accumulation of the Aspergillus nidulans apoptosis-inducing factor (AIF)-like mitochondrial oxidoreductase. Mol Microbiol 70:44–59

    Article  PubMed  CAS  Google Scholar 

  • Schägger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783

    Article  PubMed  Google Scholar 

  • Scheckhuber CQ, Erjavec N, Tinazli A, Hamann A, Nyström T, Osiewacz HD (2007) Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 9:99–105

    Article  PubMed  CAS  Google Scholar 

  • Scheckhuber CQ, Mitterbauer R, Osiewacz HD (2009) Molecular basis of and interference into degenerative processes in fungi: potential relevance for improving biotechnological performance of microorganisms. Appl Microbiol Biotechnol 85:27–35

    Article  PubMed  CAS  Google Scholar 

  • Schulte E, Kück U, Esser K (1988) Extrachromosomal mutants from Podospora anserina: permanent vegetative growth in spite of multiple recombination events in the mitochondrial genome. Mol Gen Genet 211:243–349

    Article  Google Scholar 

  • Stahl U, Lemke PA, Tudzynski P, Kück U, Esser K (1978) Evidence for plasmid like DNA in a filamentous fungus, the ascomycete Podospora anserina. Mol Gen Genet 162:341–343

    Article  PubMed  CAS  Google Scholar 

  • Stumpferl SW, Stephan O, Osiewacz HD (2004) Impact of a disruption of a pathway delivering copper to mitochondria on Podospora anserina metabolism and life span. Eukaryot Cell 3:200–211

    Article  PubMed  CAS  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  • Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schägger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    Article  PubMed  CAS  Google Scholar 

  • Varecha M, Amrichova J, Zimmermann M, Ulman V, Lukasova E, Kozubek M (2007) Bioinformatic and image analyses of the cellular localization of the apoptotic proteins endonuclease G, AIF, and AMID during apoptosis in human cells. Apoptosis 12:1155–1171

    Article  PubMed  CAS  Google Scholar 

  • Wissing S, Ludovico P, Herker E, Büttner S, Engelhardt SM, Decker T, Link A, Proksch A, Rodrigues F, Corte-Real M, Fröhlich KU, Manns J, Candé C, Sigrist SJ, Kroemer G, Madeo F (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Xu LG, Li X, Zhai Z, Shu HB (2002) AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J Biol Chem 277:25617–25623

    Article  PubMed  CAS  Google Scholar 

  • Xie Q, Lin T, Zhang Y, Zheng J, Bonanno JA (2005) Molecular cloning and characterization of a human AIF-like gene with ability to induce apoptosis. J Biol Chem 280:19673–19681

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Gubkina O, Mechawar N, Elwell D, Quirion R, Krantic S (2009) Expression of apoptosis-inducing factor (AIF) in the aged rat brain. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2009.01.010

  • Zintel S, Schwitalla D, Luce K, Hamann A, Osiewacz HD (2010) Increasing mitochondrial superoxide dismutase abundance leads to impairments in protein quality control and ROS scavenging systems and to lifespan shortening. Exp Gerontol. doi:10.1016/j.exger.2010.01.006

  • Zörnig M, Hueber A, Baum W, Evan G (2001) Apoptosis regulators and their role in tumorigenesis. Biochim Biophys Acta 1551:F1–F37

    PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by grants of the Deutsche Forschungsgemeinschaft (Os75/12–1), and by the European Commission via the Integrated Project with the acronym MiMage (LSHM-CT-2004-512020). Furthermore, we thank Prof. R. Lill (Philipps University Marburg, Germany) for providing the antibody against cytochrome c.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz D. Osiewacz.

Additional information

Communicated by U. Kueck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 143 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brust, D., Hamann, A. & Osiewacz, H.D. Deletion of PaAif2 and PaAmid2, two genes encoding mitochondrial AIF-like oxidoreductases of Podospora anserina, leads to increased stress tolerance and lifespan extension. Curr Genet 56, 225–235 (2010). https://doi.org/10.1007/s00294-010-0295-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-010-0295-1

Keywords

Navigation