Skip to main content
Log in

Deletion of the cpku80 gene in the chestnut blight fungus, Cryphonectria parasitica, enhances gene disruption efficiency

  • Technical Note
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The chestnut blight fungus, Cryphonectria parasitica, and associated virulence-attenuating hypoviruses have emerged as an important model system for studying molecular mechanisms underlying fungal–plant pathogenic interactions. As more gene sequence information becomes available as a result of C. parasitica express sequence tags (ESTs) and ongoing whole genome sequencing projects, the development of an efficient gene disruption system has become an urgent need for functional genomics studies of this important forestry pathogen. Here, we report the cloning of the C. parasitica gene cpku80 that encodes a key component of the nonhomologous end joining DNA repair pathway and the construction of a corresponding deletion mutant strain. The cpku80 mutant was indistinguishable from the parental wild-type strain EP155 in colony morphology, ability to support hypovirus replication, conidiation and virulence. As predicted, the Δcpku80 strain did exhibit an increased sensitivity to the mutagen methyl methanesulfonate. A test with three selected genes resulted in a gene disruption efficiency of about 80% for the Δcpku80 strain, a significant increase over the 2–5% levels of homologous recombination generally observed for the wild-type strain EP155. This efficient homologous recombination system provides a powerful tool for large-scale analysis of gene functions in C. parasitica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen TD, Dawe AL, Nuss DL (2003) Use of cDNA microarrays to monitor transcriptional responses of the chestnut blight fungus Cryphonectria parasitica to infection by virulence-attenuating hypoviruses. Eukaryot Cell 2:1253–1265

    Article  PubMed  CAS  Google Scholar 

  • Allen TD, Nuss DL (2004a) Linkage between mitochondrial hypovirulence and viral hypovirulence in the chestnut blight fungus revealed by cDNA microarray analysis. Eukaryot Cell 3:1227–1232

    Article  PubMed  CAS  Google Scholar 

  • Allen TD, Nuss DL (2004b) Specific and common alterations in host gene transcript accumulation following infection of the chestnut blight fungus by mild and severe hypoviruses. J Virol 78:4145–4155

    Article  PubMed  CAS  Google Scholar 

  • Anagnostakis SL (1982) Biological control of chestnut blight. Science 215:466–471

    Article  PubMed  Google Scholar 

  • Aravind L, Koonin EV (2001) Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res 11:1365–1374

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Choi GH, Nuss DL (1994) Attenuation of fungal virulence by synthetic infectious hypovirus transcripts. Science 264:1762–1764

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Nuss DL (1999) Infectious cDNA clone of hypovirus CHV1-Euro7: a comparative virology approach to investigate virus-mediated hypovirulence of the chestnut blight fungus Cryphonectria parasitica. J Virol 73:985–992

    PubMed  CAS  Google Scholar 

  • Choi ES et al. (2005) Characterization of the ERK homologue CpMK2 from the chestnut blight fungus Cryphonectria parasitica. Microbiology 151:1349–1358

    Article  PubMed  CAS  Google Scholar 

  • Choi GH, Nuss DL (1992) Hypovirulence of chestnut blight fungus conferred by an infectious viral cDNA. Science 257:800–803

    Article  PubMed  CAS  Google Scholar 

  • Chung HJ et al. (2006) A gene encoding phosphatidyl inositol-specific phospholipase C from Cryphonectria parasitica modulates the lac1 expression. Fungal Genet Biol 43:326–336

    Article  PubMed  CAS  Google Scholar 

  • Churchill ACL, Ciuffetti LM, Hansen DR, Etten HDv, Alfen NKv (1990) Transformation of the fungal pathogen Cryphonectria parasitica with a variety of heterologous plasmids. Curr Genet 17:25–31

    Article  CAS  Google Scholar 

  • Critchlow SE, Jackson SP (1998) DNA end-joining: from yeast to man. Trends Biochem Sci 23:394–398

    Article  PubMed  CAS  Google Scholar 

  • Cullen D, Leong SA, Wilson LJ, Henner DJ (1987) Transformation of Aspergillus nidulans with the hygromycin-resistance gene, hph. Gene 57:21–26

    Article  PubMed  CAS  Google Scholar 

  • da Silva Ferreira ME et al. (2006) The akuBKU80 mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot Cell 5:207–211

    Article  PubMed  Google Scholar 

  • Davidson RC et al. (2002) A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148:2607–2615

    PubMed  CAS  Google Scholar 

  • Dawe AL, McMains VC, Panglao M, Kasahara S, Chen B, Nuss DL (2003) An ordered collection of expressed sequences from Cryphonectria parasitica and evidence of genomic microsynteny with Neurospora crassa and Magnaporthe grisea. Microbiology 149:2373–2384

    Article  PubMed  CAS  Google Scholar 

  • Deng F, Allen TD, Hillman BI, Nuss DL (2007) Comparative analysis of alterations in host phenotype and transcript accumulation following hypovirus and mycoreovirus infections of the chestnut blight fungus. Eukaryot Cell 6:1286–1298

    Article  PubMed  CAS  Google Scholar 

  • Deng F, Allen TD, Nuss DL (2006) Ste12 transcription factor homologue CpST12 is down-regulated by hypovirus infection and required for virulence and female fertility of the chestnut blight fungus Cryphonectria parasitica. Eukaryot Cell 6:235–244

    Article  PubMed  Google Scholar 

  • Gao S, Choi GH, Shain L, Nuss DL (1996) Cloning and targeted disruption of enpg-1, encoding the major in vitro extracellular endopolygalacturonase of the chestnut blight fungus, Cryphonectria parasitica. Appl Envir Microbiol 62:1984–1990

    CAS  Google Scholar 

  • Gao S, Nuss DL (1996) Distinct roles for two G protein alpha subunits in fungal virulence, morphology, and reproduction revealed by targeted gene disruption. Proc Natl Acad Sci USA 93:14122–14127

    Article  PubMed  CAS  Google Scholar 

  • Goins CL, Gerik KJ, Lodge JK (2006) Improvements to gene deletion in the fungal pathogen Cryptococcus neoformans: absence of Ku proteins increases homologous recombination, and co-transformation of independent DNA molecules allows rapid complementation of deletion phenotypes. Fungal Genet Biol 43:531–544

    Article  PubMed  CAS  Google Scholar 

  • Hillman BI, Shapira R, Nuss DL (1990) Hypovirulence-associated suppression of host functions in Cryphonectria parasitica can be partially relieved by high light intensity. Phytopathology 80:950–956

    Article  Google Scholar 

  • Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H (2006) Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci USA 103:14871–14876

    Article  PubMed  CAS  Google Scholar 

  • Jara P et al. (1996) Cloning and characterization of the eapB and eapC genes of Cryphonectria parasitica encoding two new acid proteinases, and disruption of eapC. Mol Gen Genet 250:97–105

    PubMed  CAS  Google Scholar 

  • Kasahara S, Nuss DL (1997) Targeted disruption of a fungal G-protein beta subunit gene results in increased vegetative growth but reduced virulence. Mol Plant Microbe Interact 10:984–993

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Akamatsu Y, Sakuraba Y, Inoue H (2004) The Neurospora crassa mus-19 gene is identical to the qde-3 gene, which encodes a RecQ homologue and is involved in recombination repair and postreplication repair. Curr Genet 45:37–44

    Article  PubMed  CAS  Google Scholar 

  • Kazmierczak P, Kim D, Turina M, Alfen NKv (2005) A hydrophobin of the chestnut blight fungus, Cryphonectria parasitica, is required for stromal pustule eruption. Eukaryotic Cell 4:931–936

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Rigling D, Zhang L, Alfen NKv (1995) A new extracellular laccase of Cryphonectria parasitica is revealed by deletion of Lac1. Mol Plant-Microbe Interact 8:259–266

    Google Scholar 

  • Kim M, Park S, Kim Y, Cha B, Yang M, Kim D (2004) Deletion of a hypoviral-regulated cppk1 gene in a chestnut blight fungus, Cryphonectria parasitica, results in microcolonies. Fungal Genet Biol 41:482–492

    Article  PubMed  CAS  Google Scholar 

  • Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background. Eukaryot Cell 5:212–215

    Article  PubMed  CAS  Google Scholar 

  • Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38:233–271

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Lan X, Liao H, Parsley TB, Nuss DL, Chen B (2007) Genome sequence, full-length infectious cDNA clone, and mapping of viral double-stranded RNA accumulation determinant of hypovirus CHV1-EP721. J Virol 81:1813–1820

    Article  PubMed  CAS  Google Scholar 

  • Meyer V et al. (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128:770–775

    Article  PubMed  CAS  Google Scholar 

  • Nayak T et al. (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557–1566

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) From the cover: highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101:12248–12253

    Article  PubMed  CAS  Google Scholar 

  • Nuss DL (1992) Biological control of chestnut blight: an example of virus-mediated attenuation of fungal pathogenesis. Microbiol Rev 56:561–576

    PubMed  CAS  Google Scholar 

  • Nuss DL (2005) Hypovirulence: mycoviruses at the fungal–plant interface. Nat Rev Microbiol 3:632–642

    Article  PubMed  CAS  Google Scholar 

  • Orbach MJ, Porro EB, Yanofsky C (1986) Cloning and characterization of the gene for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Mol Cell Biol 6:2452–2461

    PubMed  CAS  Google Scholar 

  • Park S, Choi E, Kim M, Cha B, Yang M, Kim D (2004) Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Mol Microbiol 51:1267–1277

    Article  PubMed  CAS  Google Scholar 

  • Poggeler S, Kuck U (2006) Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Gene 378:1–10

    Article  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Segers GC, Regier JC, Nuss DL (2004) Evidence for a role of the regulator of G-protein signaling protein CPRGS-1 in G{alpha} subunit CPG-1-mediated regulation of fungal virulence, conidiation, and hydrophobin synthesis in the chestnut blight fungus Cryphonectria parasitica. Eukaryot Cell 3:1454–1463

    Article  PubMed  CAS  Google Scholar 

  • Segers GC, van Wezel R, Zhang X, Hong Y, Nuss DL (2006) Hypovirus papain-like protease p29 suppresses RNA silencing in the natural fungal host and in a heterologous plant system. Eukaryot Cell 5:896–904

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Masuda T, Koyama Y (2006) Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genomics 275:460–470

    Article  PubMed  CAS  Google Scholar 

  • Turina M, Prodi A, Alfen NK (2003) Role of the Mf1-1 pheromone precursor gene of the filamentous ascomycete Cryphonectria parasitica. Fungal Genet Biol 40:242–251

    Article  PubMed  CAS  Google Scholar 

  • van Alfen NK, Jaynes RA, Anagnostakis SL, Day PR (1975) Chestnut blight: biological control by transmissible hypovirulence in Endothia parasitica. Science USA 189:890–891

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Natural Science Foundation of China (30130020 and 39925003), National Hightech Program of China (2001AA223111 and 2004AA223100), and Guangxi Natural Science Foundation grant 0229001 to B.C., the Open Fund of Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering JS501 to X.L., the Guangxi Graduate Education Creativity Program grant 2007105930710M32 to Z.Y. and by Public Health Service grant GM55981 to D.L.N. Reports of improved gene disruption by disruption of the NHEJ pathways for two other plant pathogenic fungi (Claviceps purpurea and Magnaporthe grisea) appeared on line while this manuscript was under review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoshan Chen.

Additional information

Communicated by J. Heitman.

The authors Xiuwan Lan and Ziting Yao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM (DOC 132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, X., Yao, Z., Zhou, Y. et al. Deletion of the cpku80 gene in the chestnut blight fungus, Cryphonectria parasitica, enhances gene disruption efficiency. Curr Genet 53, 59–66 (2008). https://doi.org/10.1007/s00294-007-0162-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-007-0162-x

Keywords

Navigation